
TREK-USER-009

TREK

HOW TO BUILD A VISUAL C++

COMPUTATION

TUTORIAL

November 2012

TREK-USER-009

 2

TREK-USER-009

 i

TABLE OF CONTENTS

PARAGRAPH PAGE

1 What you need to know before you read this document 1

2 Technical Support ... 1

3 Introduction ... 2

4 Step-By-Step .. 3

Appendix A Computation Source Code .. 8

Appendix B Glossary .. 13

Appendix C Acronyms ... 20

TREK-USER-009

 ii

FIGURES

FIGURE PAGE

Figure 1 New Dialog Box .. 3
Figure 2 Win32 Console Application - Step 1 of 1 Dialog .. 4
Figure 3 New Project Information Dialog ... 5
Figure 4 Project Settings Dialog Link Tab .. 6

TREK-USER-009

 1

1 What you need to know before you read this document

This tutorial assumes the following:

 You are familiar with the material in the TReK Getting Started User Guide (TREK-

USER-001) and the TReK Telemetry Tutorial (TREK-USER-002).

 You are familiar with the following material in the TReK Telemetry Application

Programming Interface Reference Manual (TREK-USER-027):

 Sections 1 – 8

 GetOneNewestConvertedIntegerValue Function Description

 CreatePseudo Function Description

 UpdateOneIntegerPseudo Function Description

 RemovePseudo Function Description

 You are an average C or C++ programmer.

 You have some experience with Microsoft Visual C++.

 You know how to start the TReK Telemetry Processing application, add a packet to

the packet list, and activate the packet. (See TReK Telemetry Processing User Guide

TREK-USER-003.)

 You know how to start the TReK Telemetry Trainer application, add a packet to the

packet list, and send the packet. (See TReK Telemetry Trainer User Guide TREK-

USER-004.)

If you are uncomfortable with any of the items listed above, some of the terminology and

concepts presented in this tutorial may be difficult to understand.

2 Technical Support

If you are having trouble installing the TReK software or using any of the TReK software

applications, please try the following suggestions:

Read the appropriate material in the manual and/or on-line help.

Ensure that you are correctly following all instructions.

Checkout the TReK Web site at http://trek.msfc.nasa.gov/ for Frequently Asked

Questions.

If you are still unable to resolve your difficulty, please contact us for technical assistance:

TREK-USER-009

 2

TReK Help Desk E-Mail, Phone & Fax:

E-Mail: trek.help@nasa.gov

Telephone: 256-544-3521 (8:00 a.m. - 4:30 p.m. Central Time)

Fax: 256-544-9353

TReK Help Desk hours are 8:00 a.m. – 4:30 p.m. Central Time Monday through Friday.

If you call the TReK Help Desk and you get a recording please leave a message and

someone will return your call. E-mail is the preferred contact method for help. The e-

mail message is automatically forwarded to the TReK developers and helps cut the

response time.

3 Introduction

This tutorial will show you how to use the TReK Application Programming Interface

(API) to get data into a Visual C++ Win32 console application. The Win32 console

application that you will build performs the following tasks:

 A pseudo telemetry parameter is created to hold an integer value.

 A for loop is used to retrieve two telemetry values once every second, add the

values together, and place the result in the pseudo telemetry value.

 When the loop is exited the pseudo telemetry parameter is deleted.

The Computation project files that match the finished version of this tutorial can be found

in the TReK installation directory under \examples\VisualC++\Computation directory.

These files can be a good resource if you want to copy and paste the source code instead

of typing it in from scratch. These files also provide an easy way to verify that you have

entered the correct information. For example if you run into a compile error, check the

example files and compare them to your own.

Remember to perform incremental saves as you work through the tutorial. You never

know when there’s going to be a power outage. 

Well that’s about it – Have Fun!

TREK-USER-009

 3

4 Step-By-Step

1. Start the Visual C++ Application.

2. Go to the File menu and select New…

3. In the New dialog select the Projects tab. On the left side of the Projects tab there is

a list of project types. You will be creating a Win32 Console Application. Select

Win32 Console Application. On the right side of the dialog you must enter the

Project name (Computation) and Location (D:\Computation). You can choose a

different directory if you wish. After you have entered this information your dialog

should look like the one in Figure 1. Once you are finished push OK.

Figure 1 New Dialog Box

TREK-USER-009

 4

4. Select the option “An application that supports MFC” in the Win32 Console

Application dialog shown in Figure 2. Push the Finish button.

Figure 2 Win32 Console Application - Step 1 of 1 Dialog

5. You will see New Project Information dialog as shown in Figure 3. Push the OK

button.

TREK-USER-009

 5

Figure 3 New Project Information Dialog

6. In order to use the TReK Application Programming Interface (API) library you need

to tell Visual C++ that you want this library to be linked into your application. The

next few steps you perform will tell Visual C++ that you want to link in the TReK

API library.

7. First you need to copy the trek_user_api.lib file into your project directory. This file

is located in the TReK installation directory under lib. Copy the trek_user_api.lib file

into your Computation project directory (D:\Computation or the directory you chose).

If you have worked with libraries before then you know that there is a corresponding

trek_user_api.dll file. This file was installed in your winnt\system32 directory when

you installed the TReK software. Visual C++ knows how to find it so you don’t need

to do anything about the trek_user_api.dll file.

8. In Visual C++, go to the Project menu and choose Settings… The dialog shown in

Figure 4 will appear. In the Project Settings dialog select the Link tab. In the

Object/library modules field enter the location of the trek_user_api.lib file at the

end of the edit box (click the Object/library modules edit box and push the “End” key

on your keyboard). Since you copied this file into your local directory you should

enter trek_user_api.lib. Figure 4 shows an example of what your dialog should look

like now. When you’re done push the OK button to exit the dialog.

TREK-USER-009

 6

Figure 4 Project Settings Dialog Link Tab

9. There is one more step you need to perform in order to use the TReK API. The API

relies on several header files. You need to copy these header files into your

Computation project directory. These files are located in the TReK installation

directory under include. You should copy the trek.h, trek_error.h, and

trek_user_api.h files into your Computation project directory (D:\Computation).

10. Now you need to add the source code for your computation. You can either replace

the source code in your Computation.cpp file with the code in Appendix A or you can

type in the code yourself. If you choose to type in the code there are two sections you

will need. The first is at the beginning of the file and is marked with a comment

called “TReK Include Files.” The second section is marked with a comment called

“TReK Computation Example Code Begins Here.”

11. Now you are ready to compile and build your computation. Go to the Visual C++

Build menu and select Build Computation.exe. If you run into any computation

errors that you cannot easily solve, compare your code to the finished product in the

examples directory in the TReK installation to locate any inconsistencies. If you

encounter any Linking errors this may mean Visual C++ is having trouble locating

the trek_user_api.lib file. Make sure this file is in your Computation project

directory.

TREK-USER-009

 7

12. Before you run your computation, you need to set up your TReK system so Packet ID

7 is being sent and received. This is because Packet ID 7 contains MSID053 and

MSID055. These are the two MSIDs that your computation will retrieve once a

second and add together. To set up your TReK system for Packet ID 7, perform the

following steps:

a. Start the Telemetry Processing application.

b. Add Packet ID 7 to the packet list.

c. Activate Packet ID 7.

d. Start the Telemetry Trainer application.

e. Add Packet ID 7 to the packet list. Set the Run Time to 120 seconds.

f. Send Packet ID 7.

After you have performed the steps above, go to the Visual C++ Build menu and choose

Execute Computation.exe to run your computation. Your computation will loop 20

times and retrieve MSID053 and MSID055 during each loop. If the API returns any

return code other than SUCCESS, then a message will be printed. The computation will

print out the API return code as a string so you can see why the API call failed. Some of

the reasons this can occur are: there was an error calling one of the API functions, there

was no data available for MSID053 or MSID055, or the API could not find MSID053 or

MSID055.

When you write a program, you will probably add quite a bit more error checking than

was shown in this tutorial. For instance you would probably want to check to make sure

the telemetry pseudo parameter was created successfully and also removed successfully.

In this tutorial, these checks were not performed in order to make the program as simple

as possible. Please see the TReK Application Programming Interface Reference Manual

for more information about API return codes and what they mean.

TREK-USER-009

 8

Appendix A Computation Source Code

// Computation.cpp : Defines the entry point for the console

// application.

#include "stdafx.h"

#include "Computation.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

//

// TReK Include Files

//

#include "trek.h"

#include "trek_error.h"

#include "trek_user_api.h"

// End TReK Include Files

///

//////

// The one and only application object

CWinApp theApp;

using namespace std;

int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])

{

 int nRetCode = 0;

 // initialize MFC and print and error on failure

 if(!AfxWinInit(::GetModuleHandle(NULL),NULL,::GetCommandLine(), 0))

 {

 // TODO: change error code to suit your needs

 cerr << _T("Fatal Error: MFC initialization failed") << endl;

 nRetCode = 1;

 }

 else

 {

 // TODO: code your application's behavior here.

 //

 // TReK Computation Example Code Begins Here

 //

TREK-USER-009

 9

 char comp_pseudo[20]; // Integer Pseudo Name

 long msid053_value; // MSID053's value

 long msid055_value; // MSID055's value

 long msid053_token[TOKEN_SIZE]; // MSID053's token

 long msid055_token[TOKEN_SIZE]; // MSID055's token

 long pseudo_value; // Pseudo's value

 char status[STATUS_LEN]; // Status string

 int return_code; // Return code from TReK API

 int msid053_return_code; // Return code from TReK API

 int msid055_return_code; // Return code from TReK API

 char message[70]; // API return code as string

 int i; // Counter Variable

 //

 // Initialize the comp_pseudo variable and create an integer

 // pseudo parameter.

 //

 strcpy(comp_pseudo, "comp_pseudo");

 return_code = CreatePseudo(comp_pseudo, INTEGER_DATATYPE,1,0);

 //

 // Initialize the tokens

 //

 for(i = 0; i < TOKEN_SIZE; i++)

 {

 msid053_token[i] = 0;

 msid055_token[i] = 0;

 }

 //

 // Loop 20 times. Get the two parameters add them together

 // and update the pseudo parameter's value with the result.

 //

 for(i = 0; i < 20; i++)

 {

 msid053_return_code = GetOneNewestConvertedIntegerValue(

 PDSS_PAYLOAD,

 "MSID053",

 "",

 REAL_TIME,

 NO_SENSE,

 msid053_token,

 &msid053_value,

 status);

 msid055_return_code = GetOneNewestConvertedIntegerValue(

 PDSS_PAYLOAD,

 "MSID055",

 "",

 REAL_TIME,

TREK-USER-009

 10

 NO_SENSE,

 msid055_token,

 &msid055_value,

 status);

TREK-USER-009

 11

 //

 // If both calls succeeded, add the values and update

 // the pseudo parameter. Otherwise, write an error

 // message.

 //

 if((msid053_return_code == SUCCESS) &&

 (msid055_return_code == SUCCESS))

 {

 pseudo_value = msid053_value + msid055_value;

 printf("pseudo_value = %d\n", pseudo_value);

 return_code = UpdateOneIntegerPseudo(comp_pseudo,

 pseudo_value);

 }

 else

 {

 if(msid053_return_code != SUCCESS)

 {

 GetAPIReturnCodeAsString(msid053_return_code,

 70,

 message);

 printf("Error getting value for MSID053: %s\n",

 message);

 }

 if(msid055_return_code != SUCCESS)

 {

 GetAPIReturnCodeAsString(msid055_return_code,

 70,

 message);

 printf("Error getting value for MSID055: %s\n",

 message);

 }

 }

 //

 // Wait one second before getting next value

 //

 Sleep(1000);

 }

 //

 // Delete the pseudo parameter.

 //

 return_code = RemovePseudo(comp_pseudo);

 // End of TReK Computation Example Code

 }

 return nRetCode;

}

TREK-USER-009

 12

TREK-USER-009

 13

Appendix B Glossary
Note: This Glossary is global to all TReK documentation. All entries listed may not be

referenced within this document.

Application Programming Interface

(API)

A set of functions used by an application program

to provide access to a system’s capabilities.

Application Process Identifier

(APID)

An 11-bit field in the CCSDS primary packet

header that identifies the source-destination pair

for ISS packets. The type bit in the primary header

tells you whether the APID is a payload or system

source-destination.

Calibration The transformation of a parameter to a desired

physical unit or text state code.

Communications Outage Recorder System that captures and stores payload science,

health and status, and ancillary data during TDRSS

zone of exclusion.

Consultative Committee for Space

Data Systems (CCSDS) format

Data formatted in accordance with

recommendations or standards of the CCSDS.

Consultative Committee for Space

Data Systems (CCSDS) packet

A source packet comprised of a 6-octet CCSDS

defined primary header followed by an optional

secondary header and source data, which together

may not exceed 65535 octets.

Conversion Transformation of downlinked spacecraft data

types to ground system platform data types.

Custom Data Packet A packet containing a subset of parameters that

can be selected by the user at the time of request.

Cyclic Display Update Mode A continuous update of parameters for a particular

display.

Decommutation (Decom) Extraction of a parameter from telemetry.

Discrete Values Telemetry values that have states (e.g., on or off).

TREK-USER-009

 14

Dump During periods when communications with the

spacecraft are unavailable, data is recorded

onboard and played back during the next period

when communications resume. This data, as it is

being recorded onboard, is encoded with an

onboard embedded time and is referred to as dump

data.

Enhanced HOSC System (EHS) Upgraded support capabilities of the HOSC

systems to provide multi-functional support for

multiple projects. It incorporates all systems

required to perform data acquisition and

distribution, telemetry processing, command

services, database services, mission support

services, and system monitor and control services.

Exception Monitoring A background process capable of continuously

monitoring selected parameters for Limit or

Expected State violations. Violation notification is

provided through a text message.

Expected State Sensing Process of detecting a text state code generator in

an off-nominal state.

EXPRESS An EXPRESS Rack is a standardized payload rack

system that transports, stores and supports

experiments aboard the International Space

Station. EXPRESS stands for EXpedite the

PRocessing of Experiments to the Space Station.

File transfer protocol (ftp) Protocol to deliver file-structured information from

one host to another.

Flight ancillary data A set of selected core system data and payload

health and status data collected by the USOS

Payload MDM, used by experimenters to interpret

payload experiment results.

TREK-USER-009

 15

Grayed out Refers to a menu item that has been made

insensitive, which is visually shown by making the

menu text gray rather than black. Items that are

grayed out are not currently available.

Greenwich Mean Time (GMT) The solar time for the meridian passing through

Greenwich, England. It is used as a basis for

calculating time throughout most of the world.

Ground ancillary data A set of selected core system data and payload

health and status data collected by the POIC,

which is used by experimenters to interpret

payload experiment results. Ground Ancillary

Data can also contain computed parameters

(pseudos).

Ground receipt time Time of packet origination. The time from the

IRIG-B time signal received.

Ground Support Equipment (GSE) GSE refers to equipment that is brought in by the

user (i.e. equipment that is not provided by the

POIC).

Ground Support Equipment Packet A CCSDS Packet that contains data extracted from

any of the data processed by the Supporting

Facility and the format of the packet is defined in

the Supporting Facility’s telemetry database.

Huntsville Operations Support

Center (HOSC)

A facility located at the Marshall Space Flight

Center (MSFC) that provides scientists and

engineers the tools necessary for monitoring,

commanding, and controlling various elements of

space vehicle, payload, and science experiments.

Support consists of real-time operations planning

and analysis, inter- and intra-center ground

operations coordination, facility and data system

resource planning and scheduling, data systems

monitor and control operations, and data flow

coordination.

TREK-USER-009

 16

IMAQ ASCII A packet type that was added to TReK to support a

very specific application related to NASA’s Return

to Flight activities. It is not applicable to ISS. It is

used to interface with an infrared camera that

communicates via ASCII data.

Limit Sensing Process of detecting caution and warning

conditions for a parameter with a numerical value.

Line Outage Recorder Playback A capability provided by White Sands Complex

(WSC) to play back tapes generated at WSC

during ground system communication outages.

Measurement Stimulus Identifier

(MSID)

Equivalent to a parameter.

Monitoring A parameter value is checked for sensing

violations. A message is generated if the value is

out of limits or out of an expected state.

Parameter TReK uses the generic term parameter to mean any

piece of data within a packet. Sometimes called a

measurement or MSID in POIC terminology.

Payload Data Library (PDL) An application that provides the interface for the

user to specify which capabilities and requirements

are needed to command and control his payload.

Payload Data Services Systems

(PDSS)

The data distribution system for ISS. Able to route

data based upon user to any of a number of

destinations.

Payload Health and Status Data Information originating at a payload that reveals

the payload’s operational condition, resource

usage, and its safety/anomaly conditions that could

result in damage to the payload, its environment or

the crew.

Payload Operations Integration

Center (POIC)

Manages the execution of on-orbit ISS payloads

and payload support systems in

coordination/unison with distributed International

Partner Payload Control Centers, Telescience

Support Centers (TSC’s) and payload-unique

remote facilities.

TREK-USER-009

 17

Payload Rack Checkout Unit

(PRCU)

The Payload Rack Checkout Unit is used to verify

payload to International Space Station interfaces

for U.S. Payloads.

Playback Data retrieved from some recording medium and

transmitted to one or more users.

Pseudo Telemetry (pseudo data) Values that are created from calculations instead of

directly transported telemetry data. This pseudo

data can be created from computations or scripts

and can be displayed on the local PC.

Remotely Generated Command A command sent by a remote user whose content

is in a raw bit pattern format. The commands

differ from predefined or modifiable commands in

that the content is not stored in the POIC Project

Command Database (PCDB).

Science data Sensor or computational data generated by

payloads for the purpose of conducting scientific

experiments.

Subset A collection of parameters from the total

parameter set that is bounded as an integer number

of octets but does not constitute the packet itself.

A mini-packet.

Super sampled A parameter is super sampled if it occurs more

than once in a packet.

Swap Type A flag in the Parameter Table of the TReK

database that indicates if the specified datatype is

byte swapped (B), word swapped (W), byte and

word swapped (X), byte reversal (R), word

reversal (V) or has no swapping (N).

Switching A parameter’s value can be used to switch between

different calibration and sensing sets. There are

two types of switching on TReK: range and state

code.

TREK-USER-009

 18

Transmission Control Protocol

(TCP)

TCP is a connection-oriented protocol that

guarantees delivery of data.

Transmission Control Protocol

(TCP) Client

A TCP Client initiates the TCP connection to

connect to the other party.

Transmission Control Protocol

(TCP) Server

A TCP Server waits for (and accepts connections

from) the other party.

Telemetry Transmission of data collected form a source in

space to a ground support facility. Telemetry is

downlink only.

Telescience Support Center (TSC) A TSC is a NASA funded facility that provides the

capability to plan and operate on-orbit facility

class payloads and experiments, other payloads

and experiments, and instruments.

User Application Any end-user developed software program that

uses the TReK Application Programming Interface

software. Used synonymously with User Product.

User Data Summary Message

(UDSM)

Packet type sent by PDSS that contains

information on the number of packets sent during a

given time frame for a PDSS Payload packet. For

details on UDSM packets, see the POIC to Generic

User IDD (SSP-50305).

Uplink format The bit pattern of the command or file uplinked.

User Datagram Protocol (UDP) UDP is a connection-less oriented protocol that

does not guarantee delivery of data. In the TCP/IP

protocol suite, the UDP provides the primary

mechanism that application programs use to send

datagrams to other application programs. In

addition to the data sent, each UDP message

contains both a destination port number and a fully

qualified source and destination addresses making

it possible for the UDP software on the destination

to deliver the message to the correct recipient

process and for the recipient process to send a

reply.

TREK-USER-009

 19

User Product Any end-user developed software program that

uses the TReK Application Programming Interface

software. Used synonymously with User

Application.

Web Term used to indicate access via HTTP protocol;

also referred to as the World Wide Web (WWW).

TREK-USER-009

 20

Appendix C Acronyms
Note: This acronym list is global to all TReK documentation. Some acronyms listed

may not be referenced within this document.

AOS Acquisition of Signal

API Application Programming Interface

APID Application Process Identifier

ASCII American Standard Code for Information Interchange

CAR Command Acceptance Response

CAR1 First Command Acceptance Response

CAR2 Second Command Acceptance Response

CCSDS Consultative Committee for Space Data Systems

CDB Command Database

CDP Custom Data Packet

COR Communication Outage Recorder

COTS Commercial-off-the-shelf

CRR Command Reaction Response

DSM Data Storage Manager

EHS Enhanced Huntsville Operations Support Center (HOSC)

ERIS EHS Remote Interface System

ERR EHS Receipt Response

EXPRESS Expediting the Process of Experiments to the Space Station

ES Expected State

FAQ Frequently Asked Question

FDP Functionally Distributed Processor

FSV Flight System Verifier

FSV1 First Flight System Verifier

FSV2 Second Flight System Verifier

FPD Flight Projects Directorate

FTP File Transfer Protocol

GMT Greenwich Mean Time

GRT Ground Receipt Time

GSE Ground Support Equipment

HOSC Huntsville Operations Support Center

ICD Interface Control Document

IMAQ ASCII Image Acquisition ASCII

IP Internet Protocol

ISS International Space Station

LDP Logical Data Path

LES Limit/Expected State

LOR Line Outage Recorder

LOS Loss of Signal

MCC-H Mission Control Center – Houston

MOP Mission, Operational Support Mode, and Project

MSFC Marshall Space Flight Center

MSID Measurement Stimulus Identifier

TREK-USER-009

 21

NASA National Aeronautics and Space Administration

OCDB Operational Command Database

OS Operating System

PC Personal Computer, also Polynomial Coefficient

PCDB POIC Project Command Database

PDL Payload Data Library

PDSS Payload Data Services System

PGUIDD POIC to Generic User Interface Definition Document

POIC Payload Operations Integration Center

PP Point Pair

PRCU Payload Rack Checkout Unit

PSIV Payload Software Integration and Verification

RPSM Retrieval Processing Summary Message

SC State Code

SCS Suitcase Simulator

SSP Space Station Program

SSCC Space Station Control Center

SSPF Space Station Processing Facility

TCP Transmission Control Protocol

TReK Telescience Resource Kit

TRR TReK Receipt Response

TSC Telescience Support Center

UDP User Datagram Protocol

UDSM User Data Summary Message

URL Uniform Resource Locator

USOS United States On-Orbit Segment

VCDU Virtual Channel Data Unit

VCR Video Cassette Recorder

VPN Virtual Private Network

