TREK-USER-007

TREK

HOW TO BUILD A VISUAL C++ DISPLAY

TUTORIAL

Telescience Resoutg(it

November 2012

Approved for Public Release; Distribution is Unlimited.

TREK-USER-007

TABLE OF CONTENTS
PARAGRAPH PAGE
1 What You Need To Know Before You Read This Document.............c.ccoceevevnnnne 1
2 TeChnICal SUPPOIT ..o 1
3 INTFOUCTION ...t 2
4 SEEP-BY-STEP .o 5
5 Some Final Notes About This Tutorialccccooviiiiiinic e 58
APPENAIX A GIOSSANY ... 60
APPENAIX B ACTONYIMS.....ooiiiieiiicce ettt et e e steeresraesreenee s 67

TREK-USER-007

FIGURES

FIGURE PAGE

Figure 1 Cyclic Application Main WINAOWcoiiiiiiiniiiiieeisieeeeseee e 2
Figure 2 Conceptual Design of the Cyclic APPIICALIONcoiiiiiiiiriiiie s 3
Figure 3 Cyclic Application THIEAGS.ccvie ittt re e e sae e e 3
1o U =T Tor=T o 1 o ST 4
FIQUrE 5 NEW DIAl0g BOX...c.uiiiiiiiiieiiieiieiiie et e sttt sttt a et e bestaesa e st e sae st e tesbeateeneenneseenneneees 8
Figure 6 MFC APPWIZArd - STEP L ...ooieeiie ettt sttt et st et ste e beene e e nenne e e 9
Figure 7 MFC APPWIZAIT — STEP 2...veuiiiveiiiiecteeieiee st te et te ettt tests e e e e e sbestesneese e s etesnesresneaneas 10
Figure 8 MFC APPWIZArd — STEP 3...icuieieeiiiii sttt st esaa e e e st et e s tesneere e s e stesresresneaneas 11
Figure 9 MFC APPWIZAIA — STEP 4ottt bbb bbbttt e 12
Figure 10 MFC APPWIZAN — STEP B...oviniiiiieiieiiiteie bbbttt 13
Figure 11 MFC APPWIZAND — STEP B...o.veueiiieiieiirieieitee ettt 14
Figure 12 MFC AppWizard - Step 6 Dialog showing Base class CFormView Selection.c.cccoevveuennen. 15
Figure 13 New Project INformation dialog.cooveiririiiiieeee e 16
Figure 14 Cyclic Application Main WINGOWc.cccriiiiiiniiieeieiee e 18
Figure 15 Visual C++ RESOUICE TaD ..iiviiieiicice ettt s ste e reeee e neeenee e 20
Figure 16 The IDD_CYCLIC_FORM after the controls have been placed on the form............c..cccocvenen 21
Figure 17 Static Control properties dialog........ccveveiieiieiie e 22
Figure 18 Static control properties dialog showing MSIDO038 Caption.ccccccvvvevieiiieniiene e e 22
Figure 19 Cyclic Main WINndOW CONIOIScuiiieiie et ste e e ne e 23
Figure 20 Edit Control Before Control ID Change.........cceuierieirinieiniieseses e 24
Figure 21 Edit Control After Control ID ChanGe.ccoouiiririeiriesee e 24
Figure 22 ClassWizard Dialog Before Adding Member Variables ..., 25
Figure 23 Add Member Variable for IDC_MSIDO38_INT_API_EDITc.ccooeiiiiniirinenseneiseseee e 26
Figure 24 Add Member Variable for IDC_MSIDO38_INT_STATUS_EDIT.......ccccevviiniiniinenncneneeen, 26
Figure 25 Add Member Variable for IDC_MSID038_INT_VALUE_EDIT ..o, 27
Figure 26 Class Wizard after adding Member Variables..........cccov v 28
Figure 27 ClassWizard Dialog with the Message Maps tab selected.ccccovevviieiiiiie i 29
Figure 28 ClassWizard OnUpPAate MESSAQEecveiieieeieeiteeite et eie st et e e e teete e e e e steesreeaeeneesnsesnee e 30
Figure 29 Cyclic main window with static and edit CONIOIS.cccoevvevieiieiiece e 31
Figure 30 Visual C++ Menu ReSOUICE EQITOrc.cciviiiiiie et 32
Figure 31 Edit Menu Deletion WarniNg.c.coviiiiieiiee ettt st ae e e e 33
Figure 32 Menu Resource Editor showing Empty Menu FIrame ..o 34
Figure 34 Cyclic Application With Update MENU...........coeiiiiiiiiieee e 35
Figure 33 Cyclic Menu Bar with Update IMENUcooiiiiiiiieee e 35
Figure 35 Update Menu With STart TEEMc.oiiii e 36
Figure 36 Update Menu With STOP TEIM ..ot 36
Figure 37 Add Member Function message dialog.cooeiiiieiieniiiiee e 37
Figure 38 Add Member FUNCLION dialOg.ccccouviiiiiiiic e 38
Figure 39 Cyclic Application With Update IMENU...........coeiiiiii it 39
Figure 40 Insert Files int0 ProjeCt DIalOg.........ccuviieiieiieiie ittt st ene e 41
Figure 41 Cyclic project showing the project files liSt.ccooviii i 42
Figure 42 Project Settings Dialog After ModifiCations.cccvccuviiiiiiiiicciece e 51
Figure 43 Project Settings Dialog showing reference to TReK API Library.ccocoovvvennienenninenecne, 52
FIgure 44 OptioNS DIAI0G.cviiiiiiitirieieste bbb bbbttt e 58

1

TREK-USER-007

What You Need To Know Before You Read This Document

This tutorial assumes the following:

>

2

You are familiar with the material in the TReK Getting Started User Guide (TREK-
USER-001) and the TReK Telemetry Tutorial (TREK-USER-002).

You are familiar with the following material in the TReK Telemetry Application
Programming Interface Reference Manual (TREK-USER-027):

* Sections1-8

* GetOneNewestConvertedIntegerValue Function Description

You are an average C or C++ programmer.

You are familiar with Microsoft Visual C++ (version 6.0). You know how to use the
AppWizard, the Class Wizard, the Resource Editor, Messages, and Member
Variables. You are familiar with the Single Document Interface and know the
difference between Document files and View files. You are familiar with the concept
of threads (but you don’t necessarily know how to use them).

You know how to start the TReK Telemetry Processing application, add a packet to
the packet list, and activate the packet. (See TReK Telemetry Processing User Guide
TREK-USER-003.)

You know how to start the TReK Training Simulator application, add a packet to the

packet list, and send the packet. (See TReK Training Simulator User Guide TREK-
USER-004.)

Technical Support

If you are having trouble installing the TReK software or using any of the TReK software
applications, please try the following suggestions:

Read the appropriate material in the manual and/or on-line help.

Ensure that you are correctly following all instructions.

Checkout the TReK Web site at http://trek.msfc.nasa.gov/ for Frequently Asked
Questions.

If you are still unable to resolve your difficulty, please contact us for technical assistance:

TReK Help Desk E-Mail, Phone & Fax:

TREK-USER-007

E-Mail: trek.help@nasa.gov
Telephone: 256-544-3521 (8:00 a.m. - 4:30 p.m. Central Time)
Fax: 256-544-9353

TReK Help Desk hours are 8:00 a.m. — 4:30 p.m. Central Time Monday through Friday.
If you call the TReK Help Desk and you get a recording please leave a message and
someone will return your call. E-mail is the preferred contact method for help. The e-
mail message is automatically forwarded to the TReK developers and helps cut the
response time.

3 Introduction

This tutorial will walk you through the process of building a Visual C++ application.
This application will use the TReK Application Programming Interface (API) to retrieve
telemetry data and display the data in the main window of the application. The
application is named Cyclic because the telemetry data will be updated once every
second in a “cyclic” fashion.

The Cylic application is a Single Document Interface application. Figure 1 shows the
Cyclic main window.

#T Untitled - Cyclic IS [=] E3
File Update Help

O|2|E] =2 & 2]

Yalue Shatus APl Feturn
MSIDO38 |33 [/55 |Success

Feady l_ I_ l—zﬁ

Figure 1 Cyclic Application Main Window

The Update menu contains two menu items: Start and Stop. When the user selects Start
the values for MSID038 in the main window are updated once every second. To stop the
display from updating the user can select Stop.

Figure 2 shows a conceptual design of the Cyclic application. The View class is
responsible for updating the Cyclic user interface. The Document class is responsible for
doing the application’s main work. The work in this case consists of getting new

TREK-USER-007

telemetry data once every second. The Document class interfaces with the TReK API
library in order to access the real-time telemetry data.

Cyclic Main Window
A

The View Class
Updates the Cyclic
User Interface.
The Document Class

calls the TReK API Library

to get the new data.
View Class Document | TReK
Class > API
Library

Figure 2 Conceptual Design of the Cyclic Application

There are two threads in the Cyclic Application. The Main user interface thread and
another thread that serves as a timer.

Main User Interface Thread (—\
Get New Data i
View Class Timer Thread
Document Class t—/

Figure 3 Cyclic Application Threads

TREK-USER-007

When the user selects the Start menu item, the second thread (the timer thread) is created.
The timer thread is very simple. It simply posts a message to the view class once a
second.

Figure 4 shows a step-by-step scenario of what occurs when the view class receives this
message.

Cyclic Main Window

i @ i —— Document TReK API
Timer Thread T View Class I p» TRe
—@> Class @ Library

Figure 4 Scenario

The circled numbers in the figure correspond to the following steps:

Step 1: The Timer Thread sends a message to the View Class.

Step 2: When the View Class receives this message it calls the Document Class.

Step 3: The Document Class calls the TReK API to get the new data and then
updates the document class member variables that hold that new data.

Step 4: The document class then tells the View Class to update the main window
with the new data.

Step 5: The View class updates the controls in the main window to display the
new data.

This sequence of events occurs over and over again (once a second) until the user selects
Stop from the Update menu. When the user selects Stop, the second thread is terminated
and the data in the Cyclic main window stops updating. If the user selects Start again, a
new timer thread is created and the entire sequence starts over again and continues until
the user selects stop.

The next section discusses how to build the Cyclic application step-by-step.

TREK-USER-007

4 Step-By-Step
The Step-By-Step instructions have been divided into 4 parts so that there are natural

stopping points along the way. Although you don’t have to do all four parts in one sitting
you need to do them in order. The four parts are as follows:

Part I: Creating the Visual C++ Cyclic Project.

During this part of the tutorial you will use the AppWizard to generate the Single
Document Interface files.

Part Il: Adding the Menus and Controls to the Main Window.

During this part of the tutorial you will add the menus and controls to the Cyclic main
window. You will also define the messages and member variables used in the view class
and document class.

Part I1l: Adding the Timer Thread.

During this part of the tutorial you will add the timer thread. If you aren’t familiar with
threads don’t worry. The code needed to implement the timer thread has been provided
for you and can be copied out of the TReK installation directory. This part of the tutorial
will explain how to add the timer thread to your project and how to use it. Here’s some
information about the files that implement the timer thread. There are four files that you
will copy out of the TReK installation directory. Each one is described below.

UpdateThread.h The timer thread is implemented using a class that is derived from
CWinThread. The UpdateThread.h file contains the class
definition for the timer thread class (which is called
CUpdateThread).

UpdateThread.cpp ~ The UpdateThread.cpp file contains the implementation of the
timer thread. The timer thread is very simple. It simply posts a
message to the View class once every second. When you create
the thread you will pass in an update rate that defines how often
the thread will post the message to the View class. For this tutorial
you will set the update rate to 1000 milliseconds.

Updatelnfo.h When you set up the thread, there are several pieces of information
that you need to pass in to the thread so it can do its job (such as a
handle to the View class and the update rate). The Updatelnfo.h
file contains a class definition for an object (called CUpdatelnfo)
that is used to hold this information.

Updatelnfo.cpp The Updatelnfo.cpp file contains an empty constructor and
destructor for the Updatelnfo.h file.

TREK-USER-007

Part IV: Adding the Call to the TReK Application Programming Interface Library.

During this part of the tutorial you add a reference to the TReK Application
Programming Interface library so it will be linked into your Cyclic project. This part of
the tutorial also shows you how to add the TReK API call to the document class.

The Cyclic project files that match the finished version of this tutorial can be found in the
TReK installation directory in the examples\Visual C++\Cyclic directory. These files can
be a good resource if you want to copy and paste code as you work along instead of
typing it in from scratch. You can also open this document in Microsoft Word and copy
the code sections straight from Microsoft Word into the Visual C++ editor. The files in
the examples directory also provide an easy way to verify that you have entered the
correct information. For example if you run into a compile error, check the example files
and compare them to your own.

Remember to perform incremental saves as you work through the tutorial. You never
know when there’s going to be a power outage. ©

Well that’s about it — Have Fun!

TREK-USER-007

Part |

Creating the Visual C++ Cyclic Project

1.

2.

3.

TREK-USER-007

Start the Visual C++ Application.

Go to the File menu and select New...

In the New dialog select the Projects tab. On the left side of the Projects tab there is
a list of project types. You will be creating an MFC application. Select MFC
AppWizard (exe). On the right side of the dialog you must enter the Project name
(Cyclic) and Location (D:\Cyclic). (Note: You can of course enter any location
you’d like — this is just an example). After you have entered this information your

dialog should look like the one in Figure 5. Once you are finished push OK.

Mew

Filez Projects | Wiorkzpaces | Other D ocuments I

L2 ATL COM Appiwizard % | win32 Static Library Project name:

HE|

¢ | Cluster Resource Type 'Wizard IE.'r'C“C
5% Custom Apphafizard

S1Databaze Project Logation:

DevStudio Addin Wizard [\ Cyolic

M ak efile & Create new workspace
fim bFC Activer Controfwizard) Add o cument workspace

@ MFC Appifizard [dll] ™| Dependency of;

i MFC &pphiizard [Exe] I
=% Mew Database ‘Wizard
i Utiliy Project

A |'Win32 Applicati
Iy pphcabon Platformz:

Wind2 Conzole Application
%] Win32 Dynamic-Link Library

Ll | i

Iwmzz

(] I Cancel

Figure 5 New Dialog Box

TREK-USER-007

4. The next dialog you will see is the MFC AppWizard - Step 1 dialog. In this dialog
select Single document, Document/View architecture support, and English. After you
have entered this information your dialog should look like the one in Figure 6. After
you are finished push Next.

MFC AppWizard - Step 1 H |

E R T T R B | +hat type of application would vou lke to create?
File Edit ¥iew Window Help

= Multiple docurnents

" Dialog bazed

W DiocumerntYiew architecture support?

What language would you ke your rezources in?

| Engiish [United States] (APPWZENU.DLL = |

¢ Back I MHest > I Einizh Cancel

Figure 6 MFC AppWizard - Step 1

TREK-USER-007

5. The next dialog you will see is the MFC AppWizard — Step 2 of 6 dialog. You do not
need to make any changes to the options in this dialog. It should look like the one in
Figure 7. Push Next.

MFC AppWizard - Step 2 of b |

Opens ...]
Close & Mane
E .
Sare Az " Header files anly
Exit " Database view without file support
i~ Databaze view with file suppart
Ready

If your include a database view, you must zelect a
data source.

[ata SoUTce).. |

Mo data zource iz selected.

¢ Back I Hest > I Einizh Cancel

Figure 7 MFC AppWizard — Step 2

10

TREK-USER-007

6. The next dialog you will see is the MFC AppWizard — Step 3 of 6 dialog. You do not
need to make any changes to the options in this dialog. It should look like the one in
Figure 8. Push Next.

MFC AppWizard - Step 3 of b |

“What compound document support would pau like to

|- Application clude?
File Edit ¥iew Window Help
IR EREEE
i~ Container
" Mini-zerver
" Full-zerver
i~ Both container and server
Feady ™| Active document server

I™ | fchive documett cantaiter
Srtould o ke suppart fen campound files?.

= ves, pleaze
% @, thatl you

"What ather support would vou like to include?

[Automation
¥ Activex Contrals

¢ Back I Hest > I Einizh Cancel

Figure 8 MFC AppWizard — Step 3

11

TREK-USER-007

7. The next dialog you will see is the MFC AppWizard — Step 4 of 6 dialog. You do not
need to make any changes to the options in this dialog. It should look like the one in

Figure 9. Push Next.

MFC AppWizard - Step 4 of b |

WWhat features would you like o include?

Application
[} Edit YWiew Window Help

L1
Print...
PIEIt Preview
Print Setup... ¥ Erinting and print presiswe
Exit [T Contest-zenzitive Help
¥ 3D contols
— . [MaF [Mezsaging AP
. [windows Sockets

Haw da pau want your taalbars ko loak™?

Editing Constrol: Intcurd
& MNomal

[¥ Check Box (31 Radic Battos " Intermet Explorer BeBars
'CJ Radic Button

Haw marwy files waould you like on your recent file list?

4 _:I Advanced... |
¢ Back I Hest > I Einizh | Cancel |

Figure 9 MFC AppWizard — Step 4

12

TREK-USER-007

8. The next dialog you will see is the MFC AppWizard — Step 5 of 6 dialog. You do not
need to make any changes to the options in this dialog. It should look like the one in

Figure 10. Push Next.

MFC AppWizard - Step 5 of 6 K|

. T
*. Microsoft Developer Studic wihat gtyle of project would you like

File Edit ¥iew Insert Build Help Lot s .
OO ¥ MFC Standard
™ Windows Explarer
E o Whould you like to generate source file comments?
#o [e
% Yes, pleaze
Feady " Ma, !hEII"Ik. Nou

How wiould pou like to use the MFC librany’?

% Az 5shared DLL
" &g a statically linked lbrany

¢ Back I MHest > I Einizh Cancel

Figure 10 MFC AppWizard — Step 5

13

TREK-USER-007

9. The next dialog you will see is the MFC AppWizard — Step 6 of 6 dialog. When this
dialog appears it will look like the one in Figure 11.

MFC AppWizard - Step 6 of b |

Apptfizard creates the following clagzes for pou;
CCyclichpp
ChainFrame
CCoclicDos
Clazz name: Header file:
| CCyclichiew |Cyclictview.h
Baze clazs: Implemettation file:
I Cif e j IE_I,I::Iiu:"»-’iew.u:pp
¢ Back | [HEwt = | Einizh I Cancel

Figure 11 MFC AppWizard — Step 6

14

TREK-USER-007

10. Using the Base class menu change the Base class to CFormView. The FormView
will allow you to place controls in the main window. This is the last change you need
to make in this dialog. Your dialog should look like the one in Figure 12. When you
are finished push the Finish button.

MFC AppWizard - Step 6 of b |

Apptfizard creates the following clagzes for pou;
CCuchcWiew
CCyclicdpp
Ch ainFrame
CCoclicDioc

Clazz name; Header file;

| CCyclichiew |Cyclicigw.h

Baze class: Implementation file:
CFormigw I Cyclicifiew. cpp

< Back [lewt | Einizh I Caricel

Figure 12 MFC AppWizard - Step 6 Dialog showing Base class CFormView Selection.

15

TREK-USER-007

11. The last dialog you will see is the New Project Information dialog. This dialog
should look like the one in Figure 13. Push the OK button and Visual C++ will
create the skeleton application files for you.

Mew FProject Information

Appfizard will create a new skeleton project with the fallowing specifications:

Application bype of Ceclic:
Single Document |nterface Application targeting:
Wind2

Clazzes to be created:
Application: CCyclicdpp in Ceclic.h and Cyclic.cpp
Frame: ChdainFrame in kainFrm. b and MainFrm.cpp
Document: CCuzlicDoc in CyclicDoc.h and CyclicDoc.cpp
Formtfiew: CCyolictiew in Cyclictiew b and Cyclichiew. cpp

Features:
+ Initial toolbar in main frame
+ Initial ztatuz bar in main frame
+ Printing and Print Preview support in wigw
+ 30 Controls
+ Uzesz zhared DLL implementation [MFCA2.DLL]
+ ActiveX Controls suppart enabled
+ Localizable test i
Englizh [United Statez]

Project Directon:
[D:4Crclic

Cancel

Figure 13 New Project Information dialog.

16

TREK-USER-007

12. At this point you should now have a directory called Cyclic that was created in the
location you specified. Since Visual C++ has created a complete application you can
compile and run the application to see what it looks like so far. Go to the Build menu
and select Build Cyclic.exe. You should see something similar to the following
messages in the message area at the bottom of the Visual C++ window.

Compiling resources...
Compiling...
StdAfx.cpp
Compiling...
Cyclic.cpp
MainFrm.cpp
CyclicDoc.cpp
CyclicView.cpp
Generating Code...
Linking...

Cyclic.exe - 0 error(s), 0 warning(s)

17

TREK-USER-007

13. After Visual C++ has finished building the application, go to the Build menu and
select Execute Cyclic.exe. When you do this you should see the cyclic application
main window as shown in Figure 14.

#T Untitled - Cyclic =]
Eile Edit Yiew Help

0= = S 7

TODO: Place form controlz on thiz dialog.

Ready f LIRA

Figure 14 Cyclic Application Main Window

14. At this point you can now start adding in your application specific code. Exit the
Cyclic application and move on to Part II when you’re ready.

18

TREK-USER-007

Part |1

Adding the Menus and Controls to the Main Window

19

TREK-USER-007

1. Inthe Visual C++ window choose the Resource Tab and use the tree control to show
the list of dialogs. Your Visual C++ window should look like the one in Figure 15.

+.. Cyclic - Microsoft Developer Studio H=] E3
JJ File Edit “iew Inzert BoundsChecker Project Build Toolz ‘window Help
[alzm@ =8| = [DES e BB | EEr—
CwEET)|
Cyclc]fwinz2 Debug = mE [EDE Y@ corens E |5 [fs % % B ¢

=l

=23 Cyclic resources |

D Accelerator

= Dialog

-& 00_sB0UTBOX
& IDD_CYCLIC_FORM
3 leon

-] Menu

D String T able

(22 Tookar

D Wersion

Tus Elass...l Heso...l FiIeVi...l 2] InfoV...l

E] -
1 j
-
Build 4 Dabug Find in Files 1 % Find in Files2 3 MeCabe Battlemap » M| 4| | 3
Feady /él

Figure 15 Visual C++ Resource Tab

20

TREK-USER-007

2. Double click on IDD_CYCLIC_FORM. This will open up the form view control that
serves as the client area of the main window of the Cyclic application. Perform the

following steps:
» Delete the static text control displaying the text “TODO: Place form controls

on this dialog.”.
» Use the Visual C++ tools to place four static text controls and three edit

controls onto the form as shown in Figure 16.

The three edit controls will be used to display the converted integer value of MSID038,
the status string for MSID038, and the TReK API Return value for the API call
used to retrieve the MSIDO038 converted value.

*t.: Cyclic - Microsoft Developer Studio - [Cyclic.rc - IDD_CYCLIC_FORM [Dialog]]
_|E1x

J File Edit “iew |ngert BoundsChecker Project Build Lapout Tool: ‘window Help
JJ% |B"" = | & 2 | a0 HE,E%‘ |Eﬂt|5lall j|« = &3 Y (%‘J'Cﬁyclic\-’iew

Cyclic x| ['win32 Debug
=l x|

=423 Cyelic resources
D Accelerator

Ela Dialog
IDD_ABOUTEOX

IDD_CYCLIC_FORM

Static Static Static
Static [Edit Edit E dit

-3 Toolbar
[0 Wersion

B3 Class. | @ Reso. | (2] Fievi. | @ Infov. |

[EY

|
o

Build ,{ Debug & Find in Files 1 & Find in Files2 % McCabe Battlemap 3 M| 4] |

Bk = = 0 & | Ea

|| |2 7 b

Fieady

[+ 0.0 i 241253 [READZ|

Figure 16 The IDD_CYCLIC_FORM after the controls have been placed on the form.

Note: If you inadvertently close the Controls palette, you can get it back by putting your
mouse cursor on the Visual C++ menu bar and right clicking to activate the pop-up menu.
Choose Controls on the pop-up menu and the floating Controls palette will reappear.

21

TREK-USER-007

3. Select the static control on the far left, click the right mouse button, and select
properties. The Properties dialog shown in Figure 17 will appear. The word Static is
already selected. Type in the text MSIDO038 to replace the word Static. The dialog
should now look like the one in Figure 18. Close the dialog by selecting the X in the
upper right hand corner.

Text Properties

= ? General | Styles I Extended Styles |
ID: [IDC_STATIC =] Captior: [SEIE
v Wizible V¥ Group [T HelplD

[Dizabled [Tab stop

Figure 17 Static Control properties dialog.

Text Properties

= ? General | Styles I Extended Styles |

ID: [IDC_STATIC x| Caption: [MsID03E

v Wizible V¥ Group [T HelplD
[Dizabled [Tab stop

Figure 18 Static control properties dialog showing MSID038 caption.

22

TREK-USER-007

4. Change each of the other Static controls in the same way. The other static controls
from left to right should display the words Value, Status, and API Return in that
order. After you are finished your controls should look like the ones in Figure 19.

*t., Cyclic - Microzoft Developer Studio - [Cyclic.re - IDD_CYCLIC_FORM [Dialog]]

|File | Edit View Insst BoundsChecksr Project Buld Lapout Tooks window Help 18] x|
8 EEE ey DR | G5 G| RO e A N | Erm—
TEE R

Cyclic =][win32 Debug B[e e @HJ‘I‘@ B [Entie Conterts]| g | 58 o o | 4

=423 Cyclic resources

-2 Acceleratar

Ea Dialog
& IDD_sBOUTEOX
-E[D0_cveLic_FoRm]
#-[Z] lcon
-2 Menu
(23] String T able =
D Taolbar B ot At) B] i
D ‘Wersion

Walue Status APl Return
MSIDO38 |Edit IEdit E it

== Class...l Heso...l FiIeVi...l 2] |nfoV...|

j
wil

Build 4/ Debug Find in Files 1 % Find in Files2 3 MeCabe Battlemap & M| 4] |

[EE ==
Feady [00 |57 244.78 [READ 4|

Figure 19 Cyclic Main Window Controls

23

TREK-USER-007

5. Select the edit control on the far left, click the right mouse button, and select
properties. The Properties dialog shown in Figure 20 will appear. Change the ID
field so the edit control’s ID is IDC_MSID038 INT VALUE EDIT as shown in
Figure 21. (Note: You can not see all of the text in the text field in the picture, but
make sure you type in the complete name IDC_MSID038_INT_VALUE_EDIT).

Edit Froperties
4 % Generl | Styles I Extended Styles |

(R IDC EDIT -

V¥ Wizible [T Group [T HelplD
[T Disabled ¥ Tab stop

Figure 20 Edit Control Before Control ID Change.

Edit Properties

I0: ||DE_M5|DD3B_|NT_mLuj

[V Wizible [Group [T HelplD
[Dizabled ¥ Tab stop

Figure 21 Edit Control After Control ID Change.

6. Change the other two edit control IDs in the same manner. The other two IDs from
left to right should be IDC_MSID038 INT_STATUS_EDIT and
IDC_MSID038_INT_API_EDIT.

24

TREK-USER-007

7. At this point you need to assign member variables to each of the edit controls. Go to
the View menu and select ClassWizard... In the Class Wizard dialog select the
Member Variables tab. Make sure the Class name is CCyclicView. The member
variables you are about to create should be part of the View class. The ClassWizard
dialog should look like the one in Figure 22.

MFC ClassWizard [] |

leszage Maps Member Wariables | Autormatian I Activer Events I Clazz Infao I

Broject: Clazss pame: Add Class.. = |
[- | [ccyciciew =l
) . ; o Add Wariable. . |
A ACyehichCoclictiew h, Db ACeclichCyclicWiew cpp
Contral 10s: Type tember Welete Yarable |
IDC_MSIDO3S INT APl EDIT
IDC_MSIDO38_INT_STATUS_EDIT L et (e s |
IDC_MSIDO3E_INT_WALUE_EDIT :

B sl |

Description:

] I Cancel

Figure 22 ClassWizard Dialog Before Adding Member Variables

25

TREK-USER-007

8. In the ClassWizard dialog select the IDC_MSIDO038 _INT_API_EDIT control and
then push the Add Variable button. In the Add Variable dialog fill in the information
shown in Figure 23 (Member variable name: m_msid038_int_api, Category: Value,
Variable type: CString). This member variable will be used to hold the API function
call return value (in a character string format). You will learn more about this in Part
IV. After you are finished push the OK button.

Add Member Variable H

kember wanable name: K

Cancel

_D
{rn_msid35_int_api |

Category:
IVaIue j

Wariable bype:

CShing

Description:

CString with length walidation

Figure 23 Add Member Variable for IDC_MSID038_INT_API_EDIT

9. Choose the IDC_MSID038 INT_STATUS EDIT variable and push the Add
Variable button. Enter the information shown in Figure 24 (Member variable name:
m_msid038_int_status, Category: Value, Variable type: CString). This member
variable will be used to hold the status string associated with MSID038. This is
returned in the API function call. You will learn more about this in Part IV. Push the
OK button.

Add Member Variable [7]
tember variable name:
Im_msidDSS_int_status

LCategory:

Value

Yariable bype:

CString j

Description:

CString with length walidation

Figure 24 Add Member Variable for IDC_MSID038_INT_STATUS_EDIT

26

TREK-USER-007

10. Choose the IDC_MSIDO038_INT_VALUE_EDIT variable and push the Add
Variable button. Enter the information shown in Figure 25 (Member Variable
Name: m_msid038_int_value, Category: Value, Variable Type: long). This member
variable will be used to hold the value of MSID038 that is retrieved using the API
function call. You will learn more about this in Part IV. Push the OK button.

Add Member ¥anable EHE

tember vanable name: K

|m_msid038_int_value
Cancel

i

Cateqary:

IVaIue j

YWarniable type:

T

Description:

lohg with range walidation

Figure 25 Add Member Variable for IDC_MSID038_INT_VALUE_EDIT

27

TREK-USER-007

11. After you have added all the member variables, the Class Wizard dialog should look
like the one in Figure 26.

MFC ClassWizard E |

teszage Maps Member Yanables | Autamation I Activer Events I Clazz Info |

Project; Clazz name; fdd Class... = |
Cyclic =l | CCyclicview -
: o ; o Add Variable. . |
Ot ACyclichCocliciew. b, D04 ACyclichCoclicYiew. cpp
Contral |0 Type b ember Delete Wariable |
IDC_MSIDO03E_INT_aPI_EDIT CString r_mzid038_int_api Undate Col
1D MSIDO38 INT_STATUS EDIT CString m_mzsid38 it status puEtE LOITITE |

SID0AE [T WAl lE EDIT [nomaidU3E ink value -
Bitad bl |

Dezcription; [org with range +walidation

Minirnurm W alue;

b airnurm Y alue:; I

| k. I Cancel

Figure 26 Class Wizard after adding Member Variables

28

TREK-USER-007

12. In the ClassWizard dialog choose the Message Maps tab. The dialog should now
look like the one in Figure 27.

MFC ClassWizard |
Mezzage Maps | Member Y ariables | Automation I Activer Eventz | Clazs Info |

Project: Clazs name: Add Clase |
[T ~ | [CCocicyien I .

; o ; o Sdd Function |
DA ACychchCychcyiew. b, Db ACechchCoclichiew. cpp

Object 10z Meszages: Welete Furctiar |
ID_ME=T_PAME - EN_CHAMGE - .
ID_FPREY_FPAME _I EMN_ERRSFACE — ﬁl
ID_VIEW_STATUS_BAR EM_HSCROLL

ID_WIEWw_TOOLBAR EM_KILLFOCUS

IDC_MSIDO3E_INT_aPI_EDIT EMN_MaxTEXT

IDC MSIDO3E IMT STATUS EDIT EM_SETFOCUS b

IDC KSID03E [MT WwALUE EDIT EN_LUPDATE w7

b ember functions:

YW DaoDataEwchange
YW OnBeaginPrinting
YW OnEndPrinting

Y OnPreparePrinting
V. OnPrint =i

Description:

| »

Ok, I Cancel

Figure 27 ClassWizard Dialog with the Message Maps tab selected.

29

TREK-USER-007

13. In the Object IDs list scroll to the top of the list and select CCyclicView. In the
Messages list on the right select the OnUpdate message. Once you have OnUpdate
selected as shown in Figure 28, push the Add Function button. After you have
completed this step push the OK button. Save your work by selecting Save All from
the File menu.

MFC ClassWizard |

Mezzage Maps | Member Y ariables | Automation I Activer Eventz | Clazs Info |
Project: Clazs name: Add Clase |
Cyclic =l |ceyclicview | o Pt
k
D\, \CyclicsCyclicView.h, D:... \Cyclic\Cyclic¥iew. cpp &l
Object 10z Meszages: Welete Furctiar |

S crollB

CCyehichiew

Edit Cade |

ID_aFPFP_ABOUT

ID_APP_EXIT Posth cDestroy

ID_EDIT_COPY PreCreateWindow —
ID_EDIT_CUT PreSubclass\window

ID_EDIT_PASTE FreTranzlatetd ezzage

ID_EDIT_UNDO x| |5enalize hd

bember functions:

YW DaoDataEwchange
YW OnBeaginPrinting
YW OnEndPrinting

YW Onlnitiallpdate

YW OnPreparePrinting

L_I»]

L

Description: Called after a document ar OLE item haz been modified

] | Cancel

Figure 28 ClassWizard OnUpdate Message

30

TREK-USER-007

14. Rebuild and Execute the application just to make sure everything is okay at this point.
You should now see a window like the one shown in Figure 29. After you have
finished looking at it exit the Cyclic application.

&1+ Untitled - Cyclic [_ O]
File Edit Yiew Help

DEE f=2R &8 %

W alue Statuz APl Return

msiooze I

Ready [[MNUM A

Figure 29 Cyclic main window with static and edit controls.

31

TREK-USER-007

15. Now we need to fix up the Cyclic application’s menu bar. This will require deleting
a few items and adding a few. Select the Resource Tab in Visual C++. Under Cyclic
Resources, select Menu and then double click on the IDR_MAINFRAME item. This

will open up the Menu Bar resource so you can edit it. Your Visual C++ window
should look similar to the one in Figure 30.

*t., Cyclic - Microzoft Developer Studio - [Cyclic.rc - IDR_MAINFRAME [Menu]]

E File Edit “iew |nset BoundsChecker Project Buld Tool: ‘Window Help

=181x]
alzad s eelo o mE | we B e A m—
S ED
Cyclc = [win32 Debug @ij 4 | B [EntieContenis 7] g | B8 5o B | 4

=423 Cyclic resources
-2 Acceleratar

D Dialog

-2 leon

E| Menu

- & [IDR_MAINFRAME

String T able

-1 Toolbar

-[L7 Wersion

- [

B33 Class. | @] Reso. | (] Fievi..| 9 Infov.. |

#|[Tinking . ..
A

Cyclic.exe — 0 error(s). 0 warning(s)

Debug % Find in Files 1 % Find in Files2 % McCabe Battlemap % M| 4| |

&bm_u

Feady

Figure 30 Visual C++ Menu Resource Editor

32

TREK-USER-007

16. The first order of business is to delete the items that are not needed in the Cyclic
application (which is most of them). Select the File menu so the menu is posted
(appears). Select and delete all of the items on the File menu except the Exit item.

17. Delete the entire Edit menu by selecting the Edit menu on the Menu Bar you are
modifying and push the delete key. Visual C++ will show you warning in Figure 31.
Just push OK.

Microzoft ¥isual C++ |

& Thiz will delete the pop-up menu item and all commands it contains.

Cancel |

Figure 31 Edit Menu Deletion Warning.

18. Delete the View Menu in the same manner. You will get another warning. Just push
OK.

33

TREK-USER-007

19. Now it’s time to create a new menu called Update. Select the empty square frame at
the end of the menu bar. This empty frame can be seen in Figure 32. It is located to

the right of the help menu.

*t., Cyclic - Microzoft Developer Studio - [Cyclic.rc - IDR_MAINFEAME [Menu]]

E File Edit Yiew |nsert BoundsChecker Project Buld Tool: Window Help -Iﬁllll
alsEd| =e (2o [OEE|mF BB s EEm—

Cyclic = |[win32 Debug w5

VET B

IEntireContents '” 4 | i e | +

=23 Cyclic resources =
¥]--[Z Acoelerator

- B [IDR_MAIMFRAME

(21 String T able

|2 Toolhar
[0 Wersion

B2 Class...| @& Reso. | (2] Fievi..| @ Infov. |

H[Tinking. ..
A

Cyclic.exe — 0 error(=s). 0 warning(s)

Debug % Find in Files 1 % Find in Files2 McCabe Battlemap % M| 4| |

Ready

&bm_u

Figure 32 Menu Resource Editor showing Empty Menu Frame

34

TREK-USER-007

20. Select the empty menu frame and drag it so it is between the File menu and the Help
Menu. While the Frame is still selected type the word Update. When you begin
typing the Properties dialog will appear. When you are done typing the word Update
close the Properties dialog. Your menu bar should look like the one in Figure 34.

*t., Cyclic - Microzoft Developer Studio - [Cyclic.rc - IDR_MAINFRAME [Menu]]

2 Fle Edt View Inseit BoundsChecker Project Buld Tools Window Help I 1|
8 EEE ey DR | G5 B E A | e —
S ED

Cyclic = |[win3z Debug Gl HJ 1+ 3

|

IEntireContents '” ":'H | i‘ ﬁv ‘f’” o.,ﬂ' | +

=23 Cyclic resources =
-2 Acceleratar
D Dialog
-2 leon
B3 Menu
. B [DR_MAINFRAME
[Z1 String T able
(22 Tookar
D Wersion

B33 Class. | @] Reso. | (] Fievi..| 9 Infov.. |

#|[Tinking . ..
A

Cyclic.exe — 0 error(s). 0 warning(s)

Build ,{ Debug & Find in Files 1 & Find in Files2 % McCabe Battlemap % M| 4] |

Feady

&bm_u

Figure 34 Cyclic Application with Update Menu

35

TREK-USER-007

21. Now you need to add two new menu items to the Update menu. Select the Update
menu so it is posted. Select the first blank frame. Click on the right mouse button
and select Properties. In the Properties dialog type in Start for the Caption and
IDM_UPDATE_START for the ID. Your dialog should look like the one in Figure
35. Close the Properties dialog.

tenu ltem Properties

= ? General | Extended Stules I

ID: [IDM_UPDATE_START =] Caption: [ETETD

[T Separater [Pop-up [Inactive Break: INu:une "I

[T Checked [~ Grayed [Help
Frompt: I

Figure 35 Update Menu with Start Item

22. Now add the second menu item to the Update menu. Select the Update menu so it is
posted. Select the first blank frame. Click on the right mouse button and select
Properties. In the Properties dialog type in Stop for the Caption and
IDM_UPDATE_STORP for the ID. Your dialog should look like the one in Figure
36. Close the Properties dialog.

kenu ltem Properties

=l ? General Extended Styles |

[VER(IDHM _LIFDATE_STOP Captior; |Stop

[T Separater [Popup [Ipactive Break: INu:une "’I

[T Checked [Grayed [T Help
Frompt: I

Figure 36 Update Menu with Stop Item

36

TREK-USER-007

23. Now the Update menu is complete. Choose Save All from the File menu to save
your work.

24. In order for these menu items to work, you need to add a message handler for each
one. Go to the View menu and choose ClassWizard... In the ClassWizard dialog
select the Message Maps tab. Perform the following steps:

> In the Class name list make sure CCyclicView is selected.
> In the Object IDs list select IDM_UPDATE_START.

> In the Messages list on the right, select COMMAND.

» Push the Add Function... button.

The Add Member function message dialog will appear as shown in Figure 37. Don’t
make any changes, just push OK.

Add Member Function |

tember function name: N

Cancel

i

tezzage; COMMAND
Object [D: IDM_UPDATE_START

Figure 37 Add Member Function message dialog.

37

TREK-USER-007

25. Now you need to perform the same steps for the Stop menu item. Perform the
following steps:
» In the Class name list make sure CCyclicView is selected.
> In the Object IDs list select IDM_UPDATE_STOP.
» In the Messages list on the right, select COMMAND.
» Push the Add Function... button.

The Add Member function message dialog will appear as shown in Figure 38. Don’t
make any changes, just push OK.

Add Member Function |

tember function name:

| 4 I
Cancel |

tezzage: COMMMARND

Object 1D: IDM_UPDATE_STOP

Figure 38 Add Member Function dialog.

38

TREK-USER-007

26. Push the OK button in the ClassWizard Dialog. Choose Save All from the File menu
to save your work.

27. Rebuild and Execute the application just to make sure everything is okay at this point.
You should now see a window like the one shown in Figure 39. After you have
finished looking at it exit the cyclic application.

&1+ Untitled - Cyclic [_ O]
File Update Help

e =28 58| %

W alue Statuz APl Return

msiooze I

Ready [[MNUM A

Figure 39 Cyclic Application with Update Menu

28. This concludes Part II. You’re now ready to move on to Part III.

39

TREK-USER-007

Part |11

Adding The Timer Thread

40

TREK-USER-007

1. Now the real fun begins. It’s now time to start adding in the code that will make the
application do something interesting. This code will be added in both Part 111 and
Part I\VV. The objective of Part 111 is to add the user interface thread. Remember that
this thread makes it possible for your application to appear to be doing two things at
one time. To get started you need to add four new files to the Cyclic project. In order
to save time these files have been created for you and can be found in the TReK
installation directory under templates. Perform the following steps to add these files
to your project:

» Go to the TReK installation directory. Look in the templates directory and copy
the following files into your Cyclic project directory:
» Updatelnfo.cpp
» Updatelnfo.h
» UpdateThread.cpp
» UpdateThread.h

» In Visual C++, go to the Project menu, select the Add To Project cascade menu,
and then select Files.... The Insert Files Into Project dialog will appear. In the
Insert Files Into Project dialog select all four files as shown in Figure 40 and then
push the OK button. (Hint: Multiple files can be selected by holding down the Ctrl
key during the selection.)

insen Fls nto Project ————————_EE|
Loak in: I 3 Cyclic j gl
Debug @ CyclicDioc.h @ Stddfs cpp
res @ Cycliciew. cpp @ Stddfuh
@ Cyclic.cpp @ Cyclichigw.h
@ Cyclic.k @ b ainFrm.cpp ate
Cyclic.re @ MainFrrm.h

@ CychcDoc.cpp @ rezource. h

File name: I"LI pdateT hread.h'' "pdatelnfo. k' "pdateT hre QK. I
Filez of bupe: |E++ Files [.c:.cpp:cxsz iz btz inl) j Cancel |

Ingert into: I Cyclic j

Figure 40 Insert Files into Project Dialog

41

TREK-USER-007

2. InVisual C++ click on the FileView tab to see the list of Files that are in the project.
You should now see the four files you just added as shown in Figure 41.

*« Cyclic - Microsoft Developer Studio

JJ File Edit “iew Inzert BoundsChecker Project Build Toolz ‘window Help

[alzd@ s =8 |ar - [DEE e BB | EEr—
CEL Y ED
Cyclic = |['win32 Debug L|| e) JJ + 4 ||EntireContents Y” Cah |§; % e |¢
==

- Cyclic files

E1-43 Source Files
¥] Cyelic.cpp
Cyelic.ic
CypclicDoc.cpp
Cyclicview.cpp
MainFm.cpp
Stdafx.cpp
Updatelnfo.cpp
UpdateT hread.cpp
[J-=9 Header Files
...... Cyclic.h
...... CyclicDoch
...... Cyclictiew.h
------ b ainFrm.h
------ Fesourceh
...... Stdafeh
------ Updatelnfa.h
------ UpdateT hread.h
[--[Z7] Resource Files

------ ReadMe.txt
B2 Class...| @] Reso...| (2] Fievi..| 2 Infov.. |
| Skipping... {no relevant changes detected)
Al|cyelic.cpp
Linking. ..
Cyclic.exe — 0 error(s). 0 warning(s)

Debug % Find in Files 1 % Find in Files2 % Metabe Battlemap % M| 4| |

$HLL_Q

Source Code Control operation complete

Figure 41 Cyclic project showing the project files list.

42

TREK-USER-007

3. The four files that you added will be used to create the user interface thread discussed
in the Introduction. By having a separate thread you can still access the application
menu items while the information in the main window is updated every second.
There is a little bit of set up that needs to be done in the CyclicView.cpp file in order
to use these files. Go to the FileView tab in the Visual C++ window and double click
on the CyclicView.cpp file in order to open it. Go to the top of the file and add the
following lines of code after the Debug defines.

#include "UpdateThread.h"
#include "UpdateInfo.h"

#define WM MYMESSAGE (WM USER + 100)

4. The top of your CyclicView.cpp file should look like the following segment of code.
The two include statements include the header files so you can use the functions in
the UpdateThread and Updatelnfo files. The #define statement defines a user-defined
message that you will be using later.

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS FILE

static char THIS FILE[] = _ FILE ;
#endif

#include "UpdateThread.h"
#include "UpdateInfo.h"

#define WM MYMESSAGE (WM USER + 100)

5. Go to the File menu and select Save All to save your work.

43

TREK-USER-007

6. During the next few steps you will be adding a user defined message. This is the
message that the timer thread will post to the View class once every second. In this
message handler the View class calls the Document class to tell it to go get new data.
In the CCyclicView.cpp file, scroll down until you find the Message Map section.
This is what you are looking for:

L1777 77
/17777
// CCyclicView

IMPLEMENT DYNCREATE (CCyclicView, CFormView)

BEGIN MESSAGE MAP (CCyclicView, CFormView)
//{{AFX_MSG MAP (CCyclicView)
ON_COMMAND (IDM UPDATE START, OnUpdateStart)
ON_COMMAND (IDM UPDATE STOP, OnUpdateStop)
//}}AFX MSG_MAP
// Standard printing commands
ON_COMMAND (ID_ FILE PRINT, CFormView::0nFilePrint)
ON_COMMAND (ID_ FILE PRINT DIRECT, CFormView::0nFilePrint)
ON_ COMMAND (ID FILE PRINT PREVIEW, CFormView::OnFilePrintPreview)
END MESSAGE MAP ()

7. Inside the BEGIN MESSAGE MAP (CCyclicView, CFormView) line and the
END MESSAGE MAP () line add the following line of code after the
//{{AFX_MSG_MAP (CCyclicview) line:

ON MESSAGE (WM MYMESSAGE, OnMyMessage)

Now the Message Map section should look like the one below.

L1777 7777777777777 7777777777777 77777777777777777777777777777777777777
117777
// CCyclicView

IMPLEMENT DYNCREATE (CCyclicView, CFormView)

BEGIN MESSAGE MAP (CCyclicView, CFormView)
//{{AFX MSG MAP (CCyclicView)
ON MESSAGE (WM MYMESSAGE, OnMyMessage)
ON_COMMAND (IDM UPDATE START, OnUpdateStart)
ON_ COMMAND (IDM UPDATE STOP, OnUpdateStop)
//}}AFXiMSGiMAP
// Standard printing commands

44

TREK-USER-007

ON_COMMAND (ID FILE PRINT, CFormView: :OnFilePrint)

ON_COMMAND (ID_ FILE PRINT DIRECT, CFormView: :OnFilePrint)

ON_COMMAND (ID FILE PRINT PREVIEW, CFormView::OnFilePrintPreview)
END MESSAGE MAP ()

8. Go to the File menu and select Save All to save your work.

9. Inthe Files list double click on the CyclicView.h file to open it. In the CyclicView.h
file scroll down until you see the General Message Map functions section. This is
what you’re looking for:

protected:

// Generated message map functions
protected:
//{{AFX MSG(CCyclicView)
afx msg void OnUpdateStart();
afx msg void OnUpdateStop();
//}}AFX _MSG
DECLARE MESSAGE MAP ()

10. Add the following line of code after the // { (aFx_Msc (ccyclicview) line.

afx msg LRESULT OnMyMessage (WPARAM wParam, LPARAM lParam);

The message map function section should now look like the following segment of code:

protected:

// Generated message map functions
protected:
//{{AFX MSG(CCyclicView)
afx msg LRESULT OnMyMessage (WPARAM wParam, LPARAM lParam);
afx msg void OnUpdateStart();
afx msg void OnUpdateStop ()
//}}YAFX MSG
DECLARE MESSAGE MAP ()

11. Go to the File menu and select Save All to save your work.

45

TREK-USER-007

12. Now go back to the CyclicView.cpp file and add the following message handler.
This is the message handler that will get triggered when the timer thread posts a
message to the View class. This message handler can be added anywhere in the file
but it’s convenient to put it between the GetDocument() function definition and the
CCyclicView message handlers section. In this message handler the View class calls
the Document class to tell it to go get new data. The View class also tells the
Document class to update all views. When the Document class calls
UpdateAllViews, the OnUpdate message will be sent to the View Class. As you will
see later on in Part IV, the OnUpdate message handler in the View class gets the new
data from the Document class and places it in the Cyclic main window.

LRESULT CCyclicView: :0nMyMessage (WPARAM wParam, LPARAM lParam)
{

CCyclicDoc *pDoc = GetDocument () ;
pDoc->GetNewDatal() ;
pDoc->UpdateAllViews (NULL, 1, NULL);

return 0;

Here’s what the final result should look like when the message handler is inserted
beUNeentheCCyclicView::GetDocument()Iﬂessageh&nd'&r&ndtheCCyclicView
message handlers Sections.

CCyclicDoc* CCyclicView: :GetDocument () // non-debug version is inline

{
ASSERT (m_pDocument->IsKindOf (RUNTIME CLASS (CCyclicDoc)));
return (CCyclicDoc*)m_ pDocument;

}
tendif //_DEBUG

LRESULT CCyclicView: :0OnMyMessage (WPARAM wParam, LPARAM lParam)
{

CCyclicDoc *pDoc = GetDocument () ;

pDoc->GetNewData () ;

pDoc->UpdateAllViews (NULL, 1, NULL);

return O;

46

TREK-USER-007

}

LTI TLT 0777770777077 77 7077777777777 7777777 777777777777777777777777
111777

// CCyclicView message handlers

13. At this point a few additions need to be made to the document class. In the Files list
double click on the CyclicDoc.h file to open it. Add #incilude ‘“‘UpdateInfo.h’’
and #include ‘“‘UpdateThread.h’’ right before the document class definition as
shown below.

#if MSC VER >= 1000
#pragma once
#endif // MSC VER >= 1000

#include "UpdateInfo.h"
#include "UpdateThread.h"

class CCyclicDoc : public CDocument

14. In the CyclicDoc.h file find the public Attributes section and add the following
member variables:

// Attributes

public:

int number;

HANDLE thread handle;
int doc_number;

int data mode;
long msid038 con token[3];

// Variables for Individual Parameters
long msid038 int value;

CString msid038 int status;

char msid038 int api[70];

CupdateThread *thread ptr;

47

TREK-USER-007

15. In the CyclicDoc.h file move to the public Operations section and add the following
member functions:

// Operations

public:

void StartUpdate (CUpdateInfo *info ptr);
void StopUpdate () ;

void GetNewData () ;

16. Now you need to add the corresponding information to the source file. In the Files
list double click on the CyclicDoc.cpp file to open it. At the top of the file, after the
#ifdef DEBUG Statements add the include statements shown below so the segment

of code looks like the following:

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS FILE

static char THIS FILE[] = _ FILE ;
#endif

#include "UpdateThread.h"
#include "UpdateInfo.h"

17. In the CyclicDoc.cpp file locate the CCyclicDoc constructor and update it so it
matches the following:

CCyclicDoc: :CCyclicDhoc ()
{

// TODO: add one-time construction code here

number = 0;
doc_number = 500;
msid038 con token[0] = 0;

I
o
~

msid038 con token[1]
msi1id038 con token[2]

I
o
~

48

TREK-USER-007

18.In the CyclicDoc.h file you added three function prototypes GetNewbata (),
StopUpdate () and StartUpdate (CUpdateInfo *info ptr). NOM/yOUHEEdtO

add the function definitions to the CyclicDoc.cpp file. Add the following functions
after the CCyclicDoc diagnostics section. The actual code for these functions will be
filled in during Part 4.

N NN,

// CCyclicDoc User Defined Functions

L1777 77777777 777
void CCyclicDoc::StartUpdate (CUpdateInfo *info ptr)

{
}

void CcyclicDoc: :StopUpdate ()
{
}

void CCyclicDoc: :GetNewData ()
{
}

19. Go to the File menu and select Save All to save your work.

20. You’re just about ready to move to Part IV to perform the last steps. However, before
you move on to Part IV rebuild and execute the application just to make sure
everything is okay. If everything compiles and executes as it should move to Part V.
If you run into any problems remember that you can look at the finished version of
this application which is located in the the TReK installation directory under
examples/VisualC++/Cyclic.

49

TREK-USER-007

Part IV

Adding the Call to the TReK Application Programming
Interface Library

50

TREK-USER-007

1. Now for the last few steps. It seems like it has taken forever to get here, but you’re
finally here. At this point you need to add in the call to the TReK Application
Programming Interface library. Remember, in this application you want a new value
for MSID038 to show up in the main window once every second. To make this
happen you need to call the GetOneNewestConvertedIntegerValue function in the
TReK Application Programming Interface once every second to get the new value
and then display it in the main window. In order to use the TReK API library you
need to tell Visual C++ that you want this library to be linked into your application.
In Visual C++, go to the Project menu and choose Settings.... Look at the
Microsoft Foundation Classes menu and change the selection so it is set to Use

MFC in a Shared DLL. Your dialog should now look like the one shown in Figure
42.

Project Settings |
Settings For: |'win32 Debug j General | Debug | C/C++ | Link. | Hesu:uun:d: EE

Microzoft Foundation Clazses:

|1ze MFC in a Shared DLL

— Output directories

Intermediate files:
IDEI:uug

Clutput files:
IDEI:uug

k., I Cancel

Figure 42 Project Settings Dialog After Modifications.

51

TREK-USER-007

2. The next thing you need to do is to copy the trek_user_api.lib file into your project
directory. This file is located in the TReK Installation directory under lib. Copy the
trek_user_api.lib file into your Cyclic project directory. If you have worked with
libraries before then you know that there is a corresponding trek _user_api.dll file.
This file was installed in your winnt\system32 directory when you installed the TReK
software. Visual C++ knows how to find it so you don’t need to do anything about
the trek_user_api.dll file.

3. In the Project Settings dialog select the Link tab. In the Object/library modules
field enter the location of the trek_user_api.lib file. Since you copied the
trek_user_api.lib file into your project directory you should enter trek_user_api.lib.
Figure 43 shows an example of what your dialog should look like now.

Project Settings |

wind2 Debug j General I Debug | CAC++ | Lirk, | Hesu:uun:d: EE

Categony; I Genheral j Beset |

Qukput file name:

Settingz For:

IDel:uuga’E_l,u:Iic.e:-:e

Object/library modules:

Itrek_user_api.lil:u

¥ Generate debuginfe [lgnore all default libraries
¥ Link incrementally [T Generate mapfile
[~ Enable profiling

Project Options:

Debugdtrek_user_apilib fnologo fzubsysten: windows :I
dincrementalyes /pdb:"Debug/Cyclic.pdb”' /debug
fmaching: 386 fout ' Debug/Cyclic.exe” /pdbtype: zept LI

s I Cancel I

Figure 43 Project Settings Dialog showing reference to TReK API Library.

52

TREK-USER-007

Note: If you want to run in Release mode, don’t forget to do the following:

>

In the Project Settings dialog under the General tab, make sure the Settings For:
selection is set to Win32 Release. Look at the Microsoft Foundation Classes menu
and make sure the selection is set to Use MFC in a Shared DLL.

In the Project Settings dialog on the Link tab change the Settings For: menu to
Win32 Release. In the Object/library modules field enter the location of the
trek_user_api.lib file which would be trek_user_api.lib.

Now is a good time to rebuild and execute the application just to make sure
everything is okay. Once you have done this move on to the next step.

You’re almost done. You just have a few more steps to complete. Go to the
FileView list in the Visual C++ window and double click on the CyclicView.cpp file.
It’s now time to fill in the OnUpdate(), OnUpdateStart(), and OnUpdateStop()
message handlers.

Locate the OnUpdate() function and make your function look like the following one.
This function updates the main window with the newest MSID038 values.

void CCyclicView: :OnUpdate (CView* pSender, LPARAM 1Hint, CObject*pHint)

{

// TODO: Add your specialized code here and/or call the base
// class

CCyclicDoc *pDoc = GetDocument () ;
m msid038 int value = pDoc->msid038 int value;
m msid038 int status = pDoc->msid038 int status;

m msid038 int api = pDoc->msid038 int api;

UpdateData (FALSE) ;

53

TREK-USER-007

7. Locate the OnUpdateStart() function and make your function look like the following
one. This function calls the document class to create the timer thread. The timer
thread will send a message to the View class once every second telling it to call the
document class which will then call the TReK API to get the newest MSID038 data.

void CCyclicView: :0OnUpdateStart ()
{
// TODO: Add your command handler code here

CCyclicDoc *pDoc = GetDocument () :;
HWND view handle;

CUpdateInfo *info ptr = new CUpdateInfol();
view_handle = this->m hWnd;
info ptr->view _handle = view handle;

// Set the update rate to 1000 milliseconds.
info ptr->update rate = 1000;

pDoc->StartUpdate (info ptr);

8. Locate the OnUpdateStop() function and make your function look like the following
one. This function kills the user interface thread so the display stops updating.

void CCyclicView: :OnUpdateStop ()

{
// TODO: Add your command handler code here

CCyclicDoc *pDoc = GetDocument () ;

pDoc->StopUpdate () ;

54

TREK-USER-007

9. Now you need to make the final updates to the Document class. In the Files list
double click on the CyclicDoc.cpp file to open it. Find the list of include files
located near the top of the file and add references to the following include files:

#include "trek.h"
#include "trek error.h"
#include "trek user api.h"

Note: If these statements are added before the #include ‘‘stdafx.h’’ Statement this
will cause compile errors.

10.Now you need to make sure these files are located in your Cyclic project directory.
You can copy these files out of the TReK installation directory. They are located
under include. Copy the trek.h, trek_error.h, and trek_user_api.h files into your

Cyclic project directory.

11. In the CyC“CDOC.Cpp file find the CCyclicDoc: :StartUpdate (CUpdateInfo
*info ptr) function and update it so it matches the following function. When the

user selects Start from the Update menu the StartUpdate message is sent. The
StartUpdate message handler shown below creates the timer thread.

void CCyclicDoc::StartUpdate (CUpdateInfo *info ptr)
{

thread ptr = new CUpdateThread(info ptr);
thread ptr->CreateThread();

thread handle = thread ptr->m hThread;

55

TREK-USER-007

12. In the CyclicDoc.cpp file find the ccyclicboc: : startUpdate () function and

update it so it matches the following function. When the user selects Stop from the
Update menu the StopUpdate message is sent. The StopUpdate message handler
shown below terminates the timer thread.

void CCyclicDoc::StopUpdate ()

{
DWORD dwExitCode = 0;

TerminateThread(thread handle, dwExitCode);

delete thread ptr;

13. In the CyclicDoc.cpp file find the ccyclicboc: :GetNewData () function and update

it so it matches the following function. Remember you can copy this code out of the
TReK examples directory. It is located in the CyclicDoc.cpp file in the
examples\VisualC++\Cyclic directory.

void CCyclicDoc: :GetNewData ()
{

// Declare Variables used with API Functions.
int stream;

int data mode;

char identifier[MSID LEN];

char apid[20];

int return code;

long integer value;

char status[STATUS LEN];

int limit es flag;

// Set up generic input variables.
stream = PDSS PAYLOAD;

data mode = REAL TIME;
limit es flag = LES_ SENSE;

strcpy (apid, ""):;
strcpy(identifier, "MSIDO38");

HH);

strcpy (msid038 int api,

// Call the GetNewestConvertedIntegerValue function in

// the User API.

return code = GetOneNewestConvertedIntegerValue (stream,
identifier,
apid,
data_ mode,
limit es flag,
msid038 con_ token,

56

TREK-USER-007

&integer value,
status) ;

if (return code == SUCCESS)
{

// Copy the data into the document class member variables.
msid038 int value = integer value;
msid038 int status = status;

}

GetAPIReturnCodeAsString (return code, 70, msid038 int api);

14. That’s it. This concludes Part IVV. All you need to do now is to rebuild and execute
the application. Don’t forget to start the Telemetry Processing application before
you run your Cyclic Display. MSIDO038 is in Packet ID 7. Packet ID 7 is defined in
the TReK Telemetry Database (TelemetryDatabase.mdb). Be sure to Activate this
packet in the Telemetry Processing application and send it from the Training
Simulator application. If you don’t you won’t see any data.

57

TREK-USER-007

5 Some Final Notes About This Tutorial

» Please remember that it is not a good idea to force the termination of a thread using
TerminateThread. This does not give the thread a chance to clean up any resources it
may be using. Please see your Microsoft documentation for information on how to
send a message to the thread to tell it to exit.

» During this tutorial we had you copy several files out of the TReK Installation
directory into your own Cyclic project directory. It is probably a better idea to
reference these files instead of copying them. That way, when you receive a new set
of TReK files, your projects will always be pointing to the latest version. Otherwise
when you get new TReK files you will need to copy the new version of these files
into each of your project directories. However, either way will work. To tell Visual
C++ how to find libraries and header files you can use the Visual C++ Options
dialog. If you go to the Tools menu and choose Options... the dialog in Figure 44
will appear. This dialog provides a way to tell Visual C++ where to look for include
files and library files. Make sure the Show Directories for: menu has Include files
selected. Select the empty frame and type in the entire path for the TReK include
directory. Library files can be handled in the same way. Just change the Show
Directories for: menu to Library files and type in the path for the TReK lib directory.

Options EHE
Editor | Tabs | Debug I Compatibility | Buld Directories | { EE
Blatform: Show directaries for:
lm IIncIude filex j
|Qirectories: S+ 4

D ADevShudiohYCUMMCLUDE
D:\DevShudioWWCWFChinclude
DD evShudioWWCAATLNinclude
D g3y michWCE0

D hag3mfch WCLUDE

0K I Cancel

Figure 44 Options Dialog.

» The program you created during this tutorial can be modified and used to create other
displays. The timer thread files can easily be used in other Visual C++ applications
that need to update telemetry data in a cyclic fashion. When you get ready to build a

58

TREK-USER-007

new display, you can save some time by starting with a copy of the Cyclic display
and making the necessary modifications. In general, you would make modifications
in the following areas:

1. Change the controls in the main window (and their corresponding member
variables) to display a different set of parameters (MSIDs).

2. Update the View class so it matches the controls and member variables added
in step 1 above.

3. Update the Document class so the correct API calls are made for the
parameters added in stepl above.

Well.... That’s All Folks!!!!" This concludes the How to Build a Visual C++ Display
tutorial. We hope you learned a lot and had a good time!

59

Appendix A Glossary

TREK-USER-007

Note: This Glossary is global to all TReK documentation. All entries listed may not be

referenced within this document.

Application Programming Interface
(API)

Application Process ldentifier

(APID)

Calibration

Communications Outage Recorder

Consultative Committee for Space
Data Systems (CCSDS) format

Consultative Committee for Space
Data Systems (CCSDS) packet

Conversion

Custom Data Packet

Cyclic Display Update Mode

Decommutation (Decom)

Discrete Values

A set of functions used by an application program
to provide access to a system’s capabilities.

An 11-bit field in the CCSDS primary packet
header that identifies the source-destination pair
for 1SS packets. The type bit in the primary header
tells you whether the APID is a payload or system
source-destination.

The transformation of a parameter to a desired
physical unit or text state code.

System that captures and stores payload science,
health and status, and ancillary data during TDRSS
zone of exclusion.

Data formatted in accordance with
recommendations or standards of the CCSDS.

A source packet comprised of a 6-octet CCSDS
defined primary header followed by an optional
secondary header and source data, which together
may not exceed 65535 octets.

Transformation of downlinked spacecraft data
types to ground system platform data types.

A packet containing a subset of parameters that
can be selected by the user at the time of request.

A continuous update of parameters for a particular
display.

Extraction of a parameter from telemetry.

Telemetry values that have states (e.g., on or off).

60

Dump

Enhanced HOSC System (EHS)

Exception Monitoring

Expected State Sensing

EXPRESS

File transfer protocol (ftp)

Flight ancillary data

TREK-USER-007

During periods when communications with the
spacecraft are unavailable, data is recorded
onboard and played back during the next period
when communications resume. This data, as it is
being recorded onboard, is encoded with an
onboard embedded time and is referred to as dump
data.

Upgraded support capabilities of the HOSC
systems to provide multi-functional support for
multiple projects. It incorporates all systems
required to perform data acquisition and
distribution, telemetry processing, command
services, database services, mission support
services, and system monitor and control services.

A background process capable of continuously
monitoring selected parameters for Limit or
Expected State violations. Violation notification is
provided through a text message.

Process of detecting a text state code generator in
an off-nominal state.

An EXPRESS Rack is a standardized payload rack
system that transports, stores and supports
experiments aboard the International Space
Station. EXPRESS stands for EXpedite the
PRocessing of Experiments to the Space Station.

Protocol to deliver file-structured information from
one host to another.

A set of selected core system data and payload
health and status data collected by the USOS
Payload MDM, used by experimenters to interpret
payload experiment results.

61

Grayed out

Greenwich Mean Time (GMT)

Ground ancillary data

Ground receipt time

Ground Support Equipment (GSE)

Ground Support Equipment Packet

Huntsville Operations Support
Center (HOSC)

TREK-USER-007

Refers to a menu item that has been made
insensitive, which is visually shown by making the
menu text gray rather than black. Items that are
grayed out are not currently available.

The solar time for the meridian passing through
Greenwich, England. It is used as a basis for
calculating time throughout most of the world.

A set of selected core system data and payload
health and status data collected by the POIC,
which is used by experimenters to interpret
payload experiment results. Ground Ancillary
Data can also contain computed parameters
(pseudos).

Time of packet origination. The time from the
IRIG-B time signal received.

GSE refers to equipment that is brought in by the
user (i.e. equipment that is not provided by the
POIC).

A CCSDS Packet that contains data extracted from
any of the data processed by the Supporting
Facility and the format of the packet is defined in
the Supporting Facility’s telemetry database.

A facility located at the Marshall Space Flight
Center (MSFC) that provides scientists and
engineers the tools necessary for monitoring,
commanding, and controlling various elements of
space vehicle, payload, and science experiments.
Support consists of real-time operations planning
and analysis, inter- and intra-center ground
operations coordination, facility and data system
resource planning and scheduling, data systems
monitor and control operations, and data flow
coordination.

62

IMAQ ASCII

Limit Sensing

Line Outage Recorder Playback

Measurement Stimulus Identifier
(MSID)

Monitoring

Parameter

Payload Data Library (PDL)

Payload Data Services Systems

(PDSS)

Payload Health and Status Data

Payload Operations Integration
Center (POIC)

TREK-USER-007

A packet type that was added to TReK to support a
very specific application related to NASA’s Return
to Flight activities. It is not applicable to ISS. Itis
used to interface with an infrared camera that
communicates via ASCII data.

Process of detecting caution and warning
conditions for a parameter with a numerical value.

A capability provided by White Sands Complex
(WSC) to play back tapes generated at WSC
during ground system communication outages.

Equivalent to a parameter.

A parameter value is checked for sensing
violations. A message is generated if the value is
out of limits or out of an expected state.

TReK uses the generic term parameter to mean any
piece of data within a packet. Sometimes called a
measurement or MSID in POIC terminology.

An application that provides the interface for the
user to specify which capabilities and requirements
are needed to command and control his payload.

The data distribution system for ISS. Able to route
data based upon user to any of a number of
destinations.

Information originating at a payload that reveals
the payload’s operational condition, resource
usage, and its safety/anomaly conditions that could
result in damage to the payload, its environment or
the crew.

Manages the execution of on-orbit ISS payloads
and payload support systems in
coordination/unison with distributed International
Partner Payload Control Centers, Telescience
Support Centers (TSC’s) and payload-unique
remote facilities.

63

Payload Rack Checkout Unit
(PRCU)

Playback

Pseudo Telemetry (pseudo data)

Remotely Generated Command

Science data

Subset

Super sampled

Swap Type

Switching

TREK-USER-007

The Payload Rack Checkout Unit is used to verify
payload to International Space Station interfaces
for U.S. Payloads.

Data retrieved from some recording medium and
transmitted to one or more users.

Values that are created from calculations instead of
directly transported telemetry data. This pseudo
data can be created from computations or scripts
and can be displayed on the local PC.

A command sent by a remote user whose content
IS in a raw bit pattern format. The commands
differ from predefined or modifiable commands in
that the content is not stored in the POIC Project
Command Database (PCDB).

Sensor or computational data generated by
payloads for the purpose of conducting scientific
experiments.

A collection of parameters from the total
parameter set that is bounded as an integer number
of octets but does not constitute the packet itself.
A mini-packet.

A parameter is super sampled if it occurs more
than once in a packet.

A flag in the Parameter Table of the TReK
database that indicates if the specified datatype is
byte swapped (B), word swapped (W), byte and
word swapped (X), byte reversal (R), word
reversal (V) or has no swapping (N).

A parameter’s value can be used to switch between
different calibration and sensing sets. There are
two types of switching on TReK: range and state
code.

64

Transmission Control Protocol
(TCP)

Transmission Control Protocol
(TCP) Client

Transmission Control Protocol
(TCP) Server

Telemetry

Telescience Support Center (TSC)

User Application

User Data Summary Message
(UDSM)

Uplink format

User Datagram Protocol (UDP)

TREK-USER-007

TCP is a connection-oriented protocol that
guarantees delivery of data.

A TCP Client initiates the TCP connection to
connect to the other party.

A TCP Server waits for (and accepts connections
from) the other party.

Transmission of data collected form a source in
space to a ground support facility. Telemetry is
downlink only.

A TSC is a NASA funded facility that provides the
capability to plan and operate on-orbit facility
class payloads and experiments, other payloads
and experiments, and instruments.

Any end-user developed software program that
uses the TReK Application Programming Interface
software. Used synonymously with User Product.

Packet type sent by PDSS that contains
information on the number of packets sent during a
given time frame for a PDSS Payload packet. For
details on UDSM packets, see the POIC to Generic
User IDD (SSP-50305).

The bit pattern of the command or file uplinked.

UDP is a connection-less oriented protocol that
does not guarantee delivery of data. In the TCP/IP
protocol suite, the UDP provides the primary
mechanism that application programs use to send
datagrams to other application programs. In
addition to the data sent, each UDP message
contains both a destination port number and a fully
qualified source and destination addresses making
it possible for the UDP software on the destination
to deliver the message to the correct recipient
process and for the recipient process to send a

reply.

65

User Product

Web

TREK-USER-007

Any end-user developed software program that
uses the TReK Application Programming Interface
software. Used synonymously with User
Application.

Term used to indicate access via HTTP protocol;
also referred to as the World Wide Web (WWW).

66

TREK-USER-007

Appendix B Acronyms
Note: This acronym list is global to all TReK documentation. Some acronyms listed
may not be referenced within this document.

AOS
AP
APID
ASCII
CAR
CAR1
CAR2
CCSDS
CDB
CDP
COR
COTS
CRR
DSM
EHS
ERIS
ERR
EXPRESS
ES
FAQ
FDP
FSV
FSV1
FSV2
FPD
FTP
GMT
GRT
GSE
HOSC
ICD

IMAQ ASCII

IP

ISS
LDP
LES
LOR
LOS
MCC-H
MOP
MSFC

Acquisition of Signal

Application Programming Interface

Application Process Identifier

American Standard Code for Information Interchange
Command Acceptance Response

First Command Acceptance Response

Second Command Acceptance Response
Consultative Committee for Space Data Systems
Command Database

Custom Data Packet

Communication Outage Recorder
Commercial-off-the-shelf

Command Reaction Response

Data Storage Manager

Enhanced Huntsville Operations Support Center (HOSC)
EHS Remote Interface System

EHS Receipt Response

Expediting the Process of Experiments to the Space Station
Expected State

Frequently Asked Question

Functionally Distributed Processor

Flight System Verifier

First Flight System Verifier

Second Flight System Verifier

Flight Projects Directorate

File Transfer Protocol

Greenwich Mean Time

Ground Receipt Time

Ground Support Equipment

Huntsville Operations Support Center

Interface Control Document

Image Acquisition ASCII

Internet Protocol

International Space Station

Logical Data Path

Limit/Expected State

Line Outage Recorder

Loss of Signal

Mission Control Center — Houston

Mission, Operational Support Mode, and Project
Marshall Space Flight Center

67

MSID
NASA
OCDB
0S
PC
PCDB
PDL
PDSS
PGUIDD
POIC
PP
PRCU
PSIV
RPSM
sC
sCS
sSSP
sscC
SSPF
TCP
TReK
TRR
TSC
UDP
UDSM
URL
US0S
VCDU
VCR
VPN

TREK-USER-007

Measurement Stimulus Identifier

National Aeronautics and Space Administration
Operational Command Database

Operating System

Personal Computer, also Polynomial Coefficient
POIC Project Command Database

Payload Data Library

Payload Data Services System

POIC to Generic User Interface Definition Document
Payload Operations Integration Center

Point Pair

Payload Rack Checkout Unit

Payload Software Integration and Verification
Retrieval Processing Summary Message

State Code

Suitcase Simulator

Space Station Program

Space Station Control Center

Space Station Processing Facility
Transmission Control Protocol

Telescience Resource Kit

TReK Receipt Response

Telescience Support Center

User Datagram Protocol

User Data Summary Message

Uniform Resource Locator

United States On-Orbit Segment

Virtual Channel Data Unit

Video Cassette Recorder

Virtual Private Network

68

