
TREK-USER-007

TREK

HOW TO BUILD A VISUAL C++ DISPLAY

TUTORIAL

November 2012

TREK-USER-007

 i

TABLE OF CONTENTS

PARAGRAPH PAGE

1 What You Need To Know Before You Read This Document 1

2 Technical Support ... 1

3 Introduction ... 2

4 Step-By-Step .. 5

5 Some Final Notes About This Tutorial ... 58

Appendix A Glossary .. 60

Appendix B Acronyms .. 67

TREK-USER-007

 ii

FIGURES

FIGURE PAGE

Figure 1 Cyclic Application Main Window .. 2
Figure 2 Conceptual Design of the Cyclic Application .. 3
Figure 3 Cyclic Application Threads ... 3
Figure 4 Scenario ... 4
Figure 5 New Dialog Box .. 8
Figure 6 MFC AppWizard - Step 1 ... 9
Figure 7 MFC AppWizard – Step 2 ..10
Figure 8 MFC AppWizard – Step 3 ..11
Figure 9 MFC AppWizard – Step 4 ..12
Figure 10 MFC AppWizard – Step 5 ..13
Figure 11 MFC AppWizard – Step 6 ..14
Figure 12 MFC AppWizard - Step 6 Dialog showing Base class CFormView Selection.15
Figure 13 New Project Information dialog. ..16
Figure 14 Cyclic Application Main Window ...18
Figure 15 Visual C++ Resource Tab ...20
Figure 16 The IDD_CYCLIC_FORM after the controls have been placed on the form.21
Figure 17 Static Control properties dialog. ...22
Figure 18 Static control properties dialog showing MSID038 caption. ...22
Figure 19 Cyclic Main Window Controls ..23
Figure 20 Edit Control Before Control ID Change. ..24
Figure 21 Edit Control After Control ID Change. ..24
Figure 22 ClassWizard Dialog Before Adding Member Variables ..25
Figure 23 Add Member Variable for IDC_MSID038_INT_API_EDIT ..26
Figure 24 Add Member Variable for IDC_MSID038_INT_STATUS_EDIT ..26
Figure 25 Add Member Variable for IDC_MSID038_INT_VALUE_EDIT ...27
Figure 26 Class Wizard after adding Member Variables ..28
Figure 27 ClassWizard Dialog with the Message Maps tab selected. ..29
Figure 28 ClassWizard OnUpdate Message ...30
Figure 29 Cyclic main window with static and edit controls. ...31
Figure 30 Visual C++ Menu Resource Editor ..32
Figure 31 Edit Menu Deletion Warning. ..33
Figure 32 Menu Resource Editor showing Empty Menu Frame ..34
Figure 34 Cyclic Application with Update Menu ...35
Figure 33 Cyclic Menu Bar with Update Menu ...35
Figure 35 Update Menu with Start Item ...36
Figure 36 Update Menu with Stop Item ...36
Figure 37 Add Member Function message dialog. ...37
Figure 38 Add Member Function dialog. ...38
Figure 39 Cyclic Application with Update Menu ...39
Figure 40 Insert Files into Project Dialog ...41
Figure 41 Cyclic project showing the project files list. ...42
Figure 42 Project Settings Dialog After Modifications. ...51
Figure 43 Project Settings Dialog showing reference to TReK API Library. ..52
Figure 44 Options Dialog. ..58

TREK-USER-007

 1

1 What You Need To Know Before You Read This Document

This tutorial assumes the following:

 You are familiar with the material in the TReK Getting Started User Guide (TREK-

USER-001) and the TReK Telemetry Tutorial (TREK-USER-002).

 You are familiar with the following material in the TReK Telemetry Application

Programming Interface Reference Manual (TREK-USER-027):

 Sections 1 – 8

 GetOneNewestConvertedIntegerValue Function Description

 You are an average C or C++ programmer.

 You are familiar with Microsoft Visual C++ (version 6.0). You know how to use the

AppWizard, the Class Wizard, the Resource Editor, Messages, and Member

Variables. You are familiar with the Single Document Interface and know the

difference between Document files and View files. You are familiar with the concept

of threads (but you don’t necessarily know how to use them).

 You know how to start the TReK Telemetry Processing application, add a packet to

the packet list, and activate the packet. (See TReK Telemetry Processing User Guide

TREK-USER-003.)

 You know how to start the TReK Training Simulator application, add a packet to the

packet list, and send the packet. (See TReK Training Simulator User Guide TREK-

USER-004.)

2 Technical Support

If you are having trouble installing the TReK software or using any of the TReK software

applications, please try the following suggestions:

Read the appropriate material in the manual and/or on-line help.

Ensure that you are correctly following all instructions.

Checkout the TReK Web site at http://trek.msfc.nasa.gov/ for Frequently Asked

Questions.

If you are still unable to resolve your difficulty, please contact us for technical assistance:

TReK Help Desk E-Mail, Phone & Fax:

TREK-USER-007

 2

E-Mail: trek.help@nasa.gov

Telephone: 256-544-3521 (8:00 a.m. - 4:30 p.m. Central Time)

Fax: 256-544-9353

TReK Help Desk hours are 8:00 a.m. – 4:30 p.m. Central Time Monday through Friday.

If you call the TReK Help Desk and you get a recording please leave a message and

someone will return your call. E-mail is the preferred contact method for help. The e-

mail message is automatically forwarded to the TReK developers and helps cut the

response time.

3 Introduction

This tutorial will walk you through the process of building a Visual C++ application.

This application will use the TReK Application Programming Interface (API) to retrieve

telemetry data and display the data in the main window of the application. The

application is named Cyclic because the telemetry data will be updated once every

second in a “cyclic” fashion.

The Cylic application is a Single Document Interface application. Figure 1 shows the

Cyclic main window.

Figure 1 Cyclic Application Main Window

The Update menu contains two menu items: Start and Stop. When the user selects Start

the values for MSID038 in the main window are updated once every second. To stop the

display from updating the user can select Stop.

Figure 2 shows a conceptual design of the Cyclic application. The View class is

responsible for updating the Cyclic user interface. The Document class is responsible for

doing the application’s main work. The work in this case consists of getting new

TREK-USER-007

 3

telemetry data once every second. The Document class interfaces with the TReK API

library in order to access the real-time telemetry data.

Figure 2 Conceptual Design of the Cyclic Application

There are two threads in the Cyclic Application. The Main user interface thread and

another thread that serves as a timer.

Figure 3 Cyclic Application Threads

Cyclic Main Window

View Class

The View Class

Updates the Cyclic

User Interface.

Document

Class

TReK

API

Library

The Document Class

calls the TReK API Library

to get the new data.

Timer Thread
Get New Data

Document Class

View Class

Main User Interface Thread

TREK-USER-007

 4

When the user selects the Start menu item, the second thread (the timer thread) is created.

The timer thread is very simple. It simply posts a message to the view class once a

second.

Figure 4 shows a step-by-step scenario of what occurs when the view class receives this

message.

Figure 4 Scenario

The circled numbers in the figure correspond to the following steps:

Step 1: The Timer Thread sends a message to the View Class.

Step 2: When the View Class receives this message it calls the Document Class.

Step 3: The Document Class calls the TReK API to get the new data and then

updates the document class member variables that hold that new data.

Step 4: The document class then tells the View Class to update the main window

with the new data.

Step 5: The View class updates the controls in the main window to display the

new data.

This sequence of events occurs over and over again (once a second) until the user selects

Stop from the Update menu. When the user selects Stop, the second thread is terminated

and the data in the Cyclic main window stops updating. If the user selects Start again, a

new timer thread is created and the entire sequence starts over again and continues until

the user selects stop.

The next section discusses how to build the Cyclic application step-by-step.

Cyclic Main Window

View Class Document

Class
TReK API

Library
Timer Thread

1

2 3

4

5

TREK-USER-007

 5

4 Step-By-Step

The Step-By-Step instructions have been divided into 4 parts so that there are natural

stopping points along the way. Although you don’t have to do all four parts in one sitting

you need to do them in order. The four parts are as follows:

Part I: Creating the Visual C++ Cyclic Project.

During this part of the tutorial you will use the AppWizard to generate the Single

Document Interface files.

Part II: Adding the Menus and Controls to the Main Window.

During this part of the tutorial you will add the menus and controls to the Cyclic main

window. You will also define the messages and member variables used in the view class

and document class.

Part III: Adding the Timer Thread.

During this part of the tutorial you will add the timer thread. If you aren’t familiar with

threads don’t worry. The code needed to implement the timer thread has been provided

for you and can be copied out of the TReK installation directory. This part of the tutorial

will explain how to add the timer thread to your project and how to use it. Here’s some

information about the files that implement the timer thread. There are four files that you

will copy out of the TReK installation directory. Each one is described below.

UpdateThread.h The timer thread is implemented using a class that is derived from

CWinThread. The UpdateThread.h file contains the class

definition for the timer thread class (which is called

CUpdateThread).

UpdateThread.cpp The UpdateThread.cpp file contains the implementation of the

timer thread. The timer thread is very simple. It simply posts a

message to the View class once every second. When you create

the thread you will pass in an update rate that defines how often

the thread will post the message to the View class. For this tutorial

you will set the update rate to 1000 milliseconds.

UpdateInfo.h When you set up the thread, there are several pieces of information

that you need to pass in to the thread so it can do its job (such as a

handle to the View class and the update rate). The UpdateInfo.h

file contains a class definition for an object (called CUpdateInfo)

that is used to hold this information.

UpdateInfo.cpp The UpdateInfo.cpp file contains an empty constructor and

destructor for the UpdateInfo.h file.

TREK-USER-007

 6

Part IV: Adding the Call to the TReK Application Programming Interface Library.

During this part of the tutorial you add a reference to the TReK Application

Programming Interface library so it will be linked into your Cyclic project. This part of

the tutorial also shows you how to add the TReK API call to the document class.

The Cyclic project files that match the finished version of this tutorial can be found in the

TReK installation directory in the examples\Visual C++\Cyclic directory. These files can

be a good resource if you want to copy and paste code as you work along instead of

typing it in from scratch. You can also open this document in Microsoft Word and copy

the code sections straight from Microsoft Word into the Visual C++ editor. The files in

the examples directory also provide an easy way to verify that you have entered the

correct information. For example if you run into a compile error, check the example files

and compare them to your own.

Remember to perform incremental saves as you work through the tutorial. You never

know when there’s going to be a power outage. 

Well that’s about it – Have Fun!

TREK-USER-007

 7

Part I

Creating the Visual C++ Cyclic Project

TREK-USER-007

 8

1. Start the Visual C++ Application.

2. Go to the File menu and select New…

3. In the New dialog select the Projects tab. On the left side of the Projects tab there is

a list of project types. You will be creating an MFC application. Select MFC

AppWizard (exe). On the right side of the dialog you must enter the Project name

(Cyclic) and Location (D:\Cyclic). (Note: You can of course enter any location

you’d like – this is just an example). After you have entered this information your

dialog should look like the one in Figure 5. Once you are finished push OK.

Figure 5 New Dialog Box

TREK-USER-007

 9

4. The next dialog you will see is the MFC AppWizard - Step 1 dialog. In this dialog

select Single document, Document/View architecture support, and English. After you

have entered this information your dialog should look like the one in Figure 6. After

you are finished push Next.

Figure 6 MFC AppWizard - Step 1

TREK-USER-007

 10

5. The next dialog you will see is the MFC AppWizard – Step 2 of 6 dialog. You do not

need to make any changes to the options in this dialog. It should look like the one in

Figure 7. Push Next.

Figure 7 MFC AppWizard – Step 2

TREK-USER-007

 11

6. The next dialog you will see is the MFC AppWizard – Step 3 of 6 dialog. You do not

need to make any changes to the options in this dialog. It should look like the one in

Figure 8. Push Next.

Figure 8 MFC AppWizard – Step 3

TREK-USER-007

 12

7. The next dialog you will see is the MFC AppWizard – Step 4 of 6 dialog. You do not

need to make any changes to the options in this dialog. It should look like the one in

Figure 9. Push Next.

Figure 9 MFC AppWizard – Step 4

TREK-USER-007

 13

8. The next dialog you will see is the MFC AppWizard – Step 5 of 6 dialog. You do not

need to make any changes to the options in this dialog. It should look like the one in

Figure 10. Push Next.

Figure 10 MFC AppWizard – Step 5

TREK-USER-007

 14

9. The next dialog you will see is the MFC AppWizard – Step 6 of 6 dialog. When this

dialog appears it will look like the one in Figure 11.

Figure 11 MFC AppWizard – Step 6

TREK-USER-007

 15

10. Using the Base class menu change the Base class to CFormView. The FormView

will allow you to place controls in the main window. This is the last change you need

to make in this dialog. Your dialog should look like the one in Figure 12. When you

are finished push the Finish button.

Figure 12 MFC AppWizard - Step 6 Dialog showing Base class CFormView Selection.

TREK-USER-007

 16

11. The last dialog you will see is the New Project Information dialog. This dialog

should look like the one in Figure 13. Push the OK button and Visual C++ will

create the skeleton application files for you.

Figure 13 New Project Information dialog.

TREK-USER-007

 17

12. At this point you should now have a directory called Cyclic that was created in the

location you specified. Since Visual C++ has created a complete application you can

compile and run the application to see what it looks like so far. Go to the Build menu

and select Build Cyclic.exe. You should see something similar to the following

messages in the message area at the bottom of the Visual C++ window.

--------------------Configuration: Cyclic - Win32 Debug--------------------

Compiling resources...

Compiling...

StdAfx.cpp

Compiling...

Cyclic.cpp

MainFrm.cpp

CyclicDoc.cpp

CyclicView.cpp

Generating Code...

Linking...

Cyclic.exe - 0 error(s), 0 warning(s)

TREK-USER-007

 18

13. After Visual C++ has finished building the application, go to the Build menu and

select Execute Cyclic.exe. When you do this you should see the cyclic application

main window as shown in Figure 14.

Figure 14 Cyclic Application Main Window

14. At this point you can now start adding in your application specific code. Exit the

Cyclic application and move on to Part II when you’re ready.

TREK-USER-007

 19

Part II

Adding the Menus and Controls to the Main Window

TREK-USER-007

 20

1. In the Visual C++ window choose the Resource Tab and use the tree control to show

the list of dialogs. Your Visual C++ window should look like the one in Figure 15.

Figure 15 Visual C++ Resource Tab

TREK-USER-007

 21

2. Double click on IDD_CYCLIC_FORM. This will open up the form view control that

serves as the client area of the main window of the Cyclic application. Perform the

following steps:

 Delete the static text control displaying the text “TODO: Place form controls

on this dialog.”.

 Use the Visual C++ tools to place four static text controls and three edit

controls onto the form as shown in Figure 16.

The three edit controls will be used to display the converted integer value of MSID038,

the status string for MSID038, and the TReK API Return value for the API call

used to retrieve the MSID038 converted value.

Figure 16 The IDD_CYCLIC_FORM after the controls have been placed on the form.

Note: If you inadvertently close the Controls palette, you can get it back by putting your

mouse cursor on the Visual C++ menu bar and right clicking to activate the pop-up menu.

Choose Controls on the pop-up menu and the floating Controls palette will reappear.

TREK-USER-007

 22

3. Select the static control on the far left, click the right mouse button, and select

properties. The Properties dialog shown in Figure 17 will appear. The word Static is

already selected. Type in the text MSID038 to replace the word Static. The dialog

should now look like the one in Figure 18. Close the dialog by selecting the X in the

upper right hand corner.

Figure 17 Static Control properties dialog.

Figure 18 Static control properties dialog showing MSID038 caption.

TREK-USER-007

 23

4. Change each of the other Static controls in the same way. The other static controls

from left to right should display the words Value, Status, and API Return in that

order. After you are finished your controls should look like the ones in Figure 19.

Figure 19 Cyclic Main Window Controls

TREK-USER-007

 24

5. Select the edit control on the far left, click the right mouse button, and select

properties. The Properties dialog shown in Figure 20 will appear. Change the ID

field so the edit control’s ID is IDC_MSID038_INT_VALUE_EDIT as shown in

Figure 21. (Note: You can not see all of the text in the text field in the picture, but

make sure you type in the complete name IDC_MSID038_INT_VALUE_EDIT).

Figure 20 Edit Control Before Control ID Change.

Figure 21 Edit Control After Control ID Change.

6. Change the other two edit control IDs in the same manner. The other two IDs from

left to right should be IDC_MSID038_INT_STATUS_EDIT and

IDC_MSID038_INT_API_EDIT.

TREK-USER-007

 25

7. At this point you need to assign member variables to each of the edit controls. Go to

the View menu and select ClassWizard… In the Class Wizard dialog select the

Member Variables tab. Make sure the Class name is CCyclicView. The member

variables you are about to create should be part of the View class. The ClassWizard

dialog should look like the one in Figure 22.

Figure 22 ClassWizard Dialog Before Adding Member Variables

TREK-USER-007

 26

8. In the ClassWizard dialog select the IDC_MSID038_INT_API_EDIT control and

then push the Add Variable button. In the Add Variable dialog fill in the information

shown in Figure 23 (Member variable name: m_msid038_int_api, Category: Value,

Variable type: CString). This member variable will be used to hold the API function

call return value (in a character string format). You will learn more about this in Part

IV. After you are finished push the OK button.

Figure 23 Add Member Variable for IDC_MSID038_INT_API_EDIT

9. Choose the IDC_MSID038_INT_STATUS_EDIT variable and push the Add

Variable button. Enter the information shown in Figure 24 (Member variable name:

m_msid038_int_status, Category: Value, Variable type: CString). This member

variable will be used to hold the status string associated with MSID038. This is

returned in the API function call. You will learn more about this in Part IV. Push the

OK button.

Figure 24 Add Member Variable for IDC_MSID038_INT_STATUS_EDIT

TREK-USER-007

 27

10. Choose the IDC_MSID038_INT_VALUE_EDIT variable and push the Add

Variable button. Enter the information shown in Figure 25 (Member Variable

Name: m_msid038_int_value, Category: Value, Variable Type: long). This member

variable will be used to hold the value of MSID038 that is retrieved using the API

function call. You will learn more about this in Part IV. Push the OK button.

Figure 25 Add Member Variable for IDC_MSID038_INT_VALUE_EDIT

TREK-USER-007

 28

11. After you have added all the member variables, the Class Wizard dialog should look

like the one in Figure 26.

Figure 26 Class Wizard after adding Member Variables

TREK-USER-007

 29

12. In the ClassWizard dialog choose the Message Maps tab. The dialog should now

look like the one in Figure 27.

Figure 27 ClassWizard Dialog with the Message Maps tab selected.

TREK-USER-007

 30

13. In the Object IDs list scroll to the top of the list and select CCyclicView. In the

Messages list on the right select the OnUpdate message. Once you have OnUpdate

selected as shown in Figure 28, push the Add Function button. After you have

completed this step push the OK button. Save your work by selecting Save All from

the File menu.

Figure 28 ClassWizard OnUpdate Message

TREK-USER-007

 31

14. Rebuild and Execute the application just to make sure everything is okay at this point.

You should now see a window like the one shown in Figure 29. After you have

finished looking at it exit the Cyclic application.

Figure 29 Cyclic main window with static and edit controls.

TREK-USER-007

 32

15. Now we need to fix up the Cyclic application’s menu bar. This will require deleting

a few items and adding a few. Select the Resource Tab in Visual C++. Under Cyclic

Resources, select Menu and then double click on the IDR_MAINFRAME item. This

will open up the Menu Bar resource so you can edit it. Your Visual C++ window

should look similar to the one in Figure 30.

Figure 30 Visual C++ Menu Resource Editor

TREK-USER-007

 33

16. The first order of business is to delete the items that are not needed in the Cyclic

application (which is most of them). Select the File menu so the menu is posted

(appears). Select and delete all of the items on the File menu except the Exit item.

17. Delete the entire Edit menu by selecting the Edit menu on the Menu Bar you are

modifying and push the delete key. Visual C++ will show you warning in Figure 31.

Just push OK.

Figure 31 Edit Menu Deletion Warning.

18. Delete the View Menu in the same manner. You will get another warning. Just push

OK.

TREK-USER-007

 34

19. Now it’s time to create a new menu called Update. Select the empty square frame at

the end of the menu bar. This empty frame can be seen in Figure 32. It is located to

the right of the help menu.

Figure 32 Menu Resource Editor showing Empty Menu Frame

TREK-USER-007

 35

20. Select the empty menu frame and drag it so it is between the File menu and the Help

Menu. While the Frame is still selected type the word Update. When you begin

typing the Properties dialog will appear. When you are done typing the word Update

close the Properties dialog. Your menu bar should look like the one in Figure 34.

Figure 34 Cyclic Application with Update Menu

TREK-USER-007

 36

21. Now you need to add two new menu items to the Update menu. Select the Update

menu so it is posted. Select the first blank frame. Click on the right mouse button

and select Properties. In the Properties dialog type in Start for the Caption and

IDM_UPDATE_START for the ID. Your dialog should look like the one in Figure

35. Close the Properties dialog.

Figure 35 Update Menu with Start Item

22. Now add the second menu item to the Update menu. Select the Update menu so it is

posted. Select the first blank frame. Click on the right mouse button and select

Properties. In the Properties dialog type in Stop for the Caption and

IDM_UPDATE_STOP for the ID. Your dialog should look like the one in Figure

36. Close the Properties dialog.

Figure 36 Update Menu with Stop Item

TREK-USER-007

 37

23. Now the Update menu is complete. Choose Save All from the File menu to save

your work.

24. In order for these menu items to work, you need to add a message handler for each

one. Go to the View menu and choose ClassWizard… In the ClassWizard dialog

select the Message Maps tab. Perform the following steps:

 In the Class name list make sure CCyclicView is selected.

 In the Object IDs list select IDM_UPDATE_START.

 In the Messages list on the right, select COMMAND.

 Push the Add Function… button.

The Add Member function message dialog will appear as shown in Figure 37. Don’t

make any changes, just push OK.

Figure 37 Add Member Function message dialog.

TREK-USER-007

 38

25. Now you need to perform the same steps for the Stop menu item. Perform the

following steps:

 In the Class name list make sure CCyclicView is selected.

 In the Object IDs list select IDM_UPDATE_STOP.

 In the Messages list on the right, select COMMAND.

 Push the Add Function… button.

The Add Member function message dialog will appear as shown in Figure 38. Don’t

make any changes, just push OK.

Figure 38 Add Member Function dialog.

TREK-USER-007

 39

26. Push the OK button in the ClassWizard Dialog. Choose Save All from the File menu

to save your work.

27. Rebuild and Execute the application just to make sure everything is okay at this point.

You should now see a window like the one shown in Figure 39. After you have

finished looking at it exit the cyclic application.

Figure 39 Cyclic Application with Update Menu

28. This concludes Part II. You’re now ready to move on to Part III.

TREK-USER-007

 40

Part III

Adding The Timer Thread

TREK-USER-007

 41

1. Now the real fun begins. It’s now time to start adding in the code that will make the

application do something interesting. This code will be added in both Part III and

Part IV. The objective of Part III is to add the user interface thread. Remember that

this thread makes it possible for your application to appear to be doing two things at

one time. To get started you need to add four new files to the Cyclic project. In order

to save time these files have been created for you and can be found in the TReK

installation directory under templates. Perform the following steps to add these files

to your project:

 Go to the TReK installation directory. Look in the templates directory and copy

the following files into your Cyclic project directory:

 UpdateInfo.cpp

 UpdateInfo.h

 UpdateThread.cpp

 UpdateThread.h

 In Visual C++, go to the Project menu, select the Add To Project cascade menu,

and then select Files…. The Insert Files Into Project dialog will appear. In the

Insert Files Into Project dialog select all four files as shown in Figure 40 and then

push the OK button. (Hint: Multiple files can be selected by holding down the Ctrl

key during the selection.)

Figure 40 Insert Files into Project Dialog

TREK-USER-007

 42

2. In Visual C++ click on the FileView tab to see the list of Files that are in the project.

You should now see the four files you just added as shown in Figure 41.

Figure 41 Cyclic project showing the project files list.

TREK-USER-007

 43

3. The four files that you added will be used to create the user interface thread discussed

in the Introduction. By having a separate thread you can still access the application

menu items while the information in the main window is updated every second.

There is a little bit of set up that needs to be done in the CyclicView.cpp file in order

to use these files. Go to the FileView tab in the Visual C++ window and double click

on the CyclicView.cpp file in order to open it. Go to the top of the file and add the

following lines of code after the Debug defines.

#include "UpdateThread.h"

#include "UpdateInfo.h"

#define WM_MYMESSAGE (WM_USER + 100)

4. The top of your CyclicView.cpp file should look like the following segment of code.

The two include statements include the header files so you can use the functions in

the UpdateThread and UpdateInfo files. The #define statement defines a user-defined

message that you will be using later.

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

#include "UpdateThread.h"

#include "UpdateInfo.h"

#define WM_MYMESSAGE (WM_USER + 100)

5. Go to the File menu and select Save All to save your work.

TREK-USER-007

 44

6. During the next few steps you will be adding a user defined message. This is the

message that the timer thread will post to the View class once every second. In this

message handler the View class calls the Document class to tell it to go get new data.

In the CCyclicView.cpp file, scroll down until you find the Message Map section.

This is what you are looking for:

///

//////

// CCyclicView

IMPLEMENT_DYNCREATE(CCyclicView, CFormView)

BEGIN_MESSAGE_MAP(CCyclicView, CFormView)

 //{{AFX_MSG_MAP(CCyclicView)

 ON_COMMAND(IDM_UPDATE_START, OnUpdateStart)

 ON_COMMAND(IDM_UPDATE_STOP, OnUpdateStop)

 //}}AFX_MSG_MAP

 // Standard printing commands

 ON_COMMAND(ID_FILE_PRINT, CFormView::OnFilePrint)

 ON_COMMAND(ID_FILE_PRINT_DIRECT, CFormView::OnFilePrint)

 ON_COMMAND(ID_FILE_PRINT_PREVIEW, CFormView::OnFilePrintPreview)

END_MESSAGE_MAP()

7. Inside the BEGIN_MESSAGE_MAP(CCyclicView, CFormView) line and the

END_MESSAGE_MAP() line add the following line of code after the

//{{AFX_MSG_MAP(CCyclicView) line:

ON_MESSAGE(WM_MYMESSAGE, OnMyMessage)

Now the Message Map section should look like the one below.

///

//////

// CCyclicView

IMPLEMENT_DYNCREATE(CCyclicView, CFormView)

BEGIN_MESSAGE_MAP(CCyclicView, CFormView)

 //{{AFX_MSG_MAP(CCyclicView)

ON_MESSAGE(WM_MYMESSAGE, OnMyMessage)

 ON_COMMAND(IDM_UPDATE_START, OnUpdateStart)

 ON_COMMAND(IDM_UPDATE_STOP, OnUpdateStop)

 //}}AFX_MSG_MAP

 // Standard printing commands

TREK-USER-007

 45

 ON_COMMAND(ID_FILE_PRINT, CFormView::OnFilePrint)

 ON_COMMAND(ID_FILE_PRINT_DIRECT, CFormView::OnFilePrint)

 ON_COMMAND(ID_FILE_PRINT_PREVIEW, CFormView::OnFilePrintPreview)

END_MESSAGE_MAP()

8. Go to the File menu and select Save All to save your work.

9. In the Files list double click on the CyclicView.h file to open it. In the CyclicView.h

file scroll down until you see the General Message Map functions section. This is

what you’re looking for:

protected:

// Generated message map functions

protected:

 //{{AFX_MSG(CCyclicView)

 afx_msg void OnUpdateStart();

 afx_msg void OnUpdateStop();

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

};

10. Add the following line of code after the //{{AFX_MSG(CCyclicView) line.

afx_msg LRESULT OnMyMessage(WPARAM wParam, LPARAM lParam);

The message map function section should now look like the following segment of code:

protected:

// Generated message map functions

protected:

 //{{AFX_MSG(CCyclicView)

 afx_msg LRESULT OnMyMessage(WPARAM wParam, LPARAM lParam);

 afx_msg void OnUpdateStart();

 afx_msg void OnUpdateStop();

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

};

11. Go to the File menu and select Save All to save your work.

TREK-USER-007

 46

12. Now go back to the CyclicView.cpp file and add the following message handler.

This is the message handler that will get triggered when the timer thread posts a

message to the View class. This message handler can be added anywhere in the file

but it’s convenient to put it between the GetDocument() function definition and the

CCyclicView message handlers section. In this message handler the View class calls

the Document class to tell it to go get new data. The View class also tells the

Document class to update all views. When the Document class calls

UpdateAllViews, the OnUpdate message will be sent to the View Class. As you will

see later on in Part IV, the OnUpdate message handler in the View class gets the new

data from the Document class and places it in the Cyclic main window.

LRESULT CCyclicView::OnMyMessage(WPARAM wParam, LPARAM lParam)

{

 CCyclicDoc *pDoc = GetDocument();

 pDoc->GetNewData();

 pDoc->UpdateAllViews(NULL, 1, NULL);

 return 0;

}

Here’s what the final result should look like when the message handler is inserted

between the CCyclicView::GetDocument() message handler and the CCyclicView

message handlers sections.

CCyclicDoc* CCyclicView::GetDocument() // non-debug version is inline

{

 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CCyclicDoc)));

 return (CCyclicDoc*)m_pDocument;

}

#endif //_DEBUG

LRESULT CCyclicView::OnMyMessage(WPARAM wParam, LPARAM lParam)

{

 CCyclicDoc *pDoc = GetDocument();

 pDoc->GetNewData();

 pDoc->UpdateAllViews(NULL, 1, NULL);

 return 0;

TREK-USER-007

 47

}

///

//////

// CCyclicView message handlers

13. At this point a few additions need to be made to the document class. In the Files list

double click on the CyclicDoc.h file to open it. Add #include ‘‘UpdateInfo.h’’

and #include ‘‘UpdateThread.h’’ right before the document class definition as

shown below.

#if _MSC_VER >= 1000

#pragma once

#endif // _MSC_VER >= 1000

#include "UpdateInfo.h"

#include "UpdateThread.h"

class CCyclicDoc : public CDocument

14. In the CyclicDoc.h file find the public Attributes section and add the following

member variables:

// Attributes

public:

int number;

HANDLE thread_handle;

int doc_number;

int data_mode;

long msid038_con_token[3];

// Variables for Individual Parameters

long msid038_int_value;

CString msid038_int_status;

char msid038_int_api[70];

CupdateThread *thread_ptr;

TREK-USER-007

 48

15. In the CyclicDoc.h file move to the public Operations section and add the following

member functions:

// Operations

public:

void StartUpdate(CUpdateInfo *info_ptr);

void StopUpdate();

void GetNewData();

16. Now you need to add the corresponding information to the source file. In the Files

list double click on the CyclicDoc.cpp file to open it. At the top of the file, after the

#ifdef _DEBUG statements add the include statements shown below so the segment

of code looks like the following:

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

#include "UpdateThread.h"

#include "UpdateInfo.h"

17. In the CyclicDoc.cpp file locate the CCyclicDoc constructor and update it so it

matches the following:

CCyclicDoc::CCyclicDoc()

{

 // TODO: add one-time construction code here

 number = 0;

 doc_number = 500;

 msid038_con_token[0] = 0;

 msid038_con_token[1] = 0;

 msid038_con_token[2] = 0;

}

TREK-USER-007

 49

18.In the CyclicDoc.h file you added three function prototypes GetNewData(),

StopUpdate()and StartUpdate(CUpdateInfo *info_ptr). Now you need to

add the function definitions to the CyclicDoc.cpp file. Add the following functions

after the CCyclicDoc diagnostics section. The actual code for these functions will be

filled in during Part 4.

///

// CCyclicDoc User Defined Functions

///

void CCyclicDoc::StartUpdate(CUpdateInfo *info_ptr)

{

}

void CcyclicDoc::StopUpdate()

{

}

void CCyclicDoc::GetNewData()

{

}

19. Go to the File menu and select Save All to save your work.

20. You’re just about ready to move to Part IV to perform the last steps. However, before

you move on to Part IV rebuild and execute the application just to make sure

everything is okay. If everything compiles and executes as it should move to Part IV.

If you run into any problems remember that you can look at the finished version of

this application which is located in the the TReK installation directory under

examples/VisualC++/Cyclic.

TREK-USER-007

 50

Part IV

Adding the Call to the TReK Application Programming

Interface Library

TREK-USER-007

 51

1. Now for the last few steps. It seems like it has taken forever to get here, but you’re

finally here. At this point you need to add in the call to the TReK Application

Programming Interface library. Remember, in this application you want a new value

for MSID038 to show up in the main window once every second. To make this

happen you need to call the GetOneNewestConvertedIntegerValue function in the

TReK Application Programming Interface once every second to get the new value

and then display it in the main window. In order to use the TReK API library you

need to tell Visual C++ that you want this library to be linked into your application.

In Visual C++, go to the Project menu and choose Settings…. Look at the

Microsoft Foundation Classes menu and change the selection so it is set to Use

MFC in a Shared DLL. Your dialog should now look like the one shown in Figure

42.

Figure 42 Project Settings Dialog After Modifications.

TREK-USER-007

 52

2. The next thing you need to do is to copy the trek_user_api.lib file into your project

directory. This file is located in the TReK Installation directory under lib. Copy the

trek_user_api.lib file into your Cyclic project directory. If you have worked with

libraries before then you know that there is a corresponding trek_user_api.dll file.

This file was installed in your winnt\system32 directory when you installed the TReK

software. Visual C++ knows how to find it so you don’t need to do anything about

the trek_user_api.dll file.

3. In the Project Settings dialog select the Link tab. In the Object/library modules

field enter the location of the trek_user_api.lib file. Since you copied the

trek_user_api.lib file into your project directory you should enter trek_user_api.lib.

Figure 43 shows an example of what your dialog should look like now.

Figure 43 Project Settings Dialog showing reference to TReK API Library.

TREK-USER-007

 53

Note: If you want to run in Release mode, don’t forget to do the following:

 In the Project Settings dialog under the General tab, make sure the Settings For:

selection is set to Win32 Release. Look at the Microsoft Foundation Classes menu

and make sure the selection is set to Use MFC in a Shared DLL.

 In the Project Settings dialog on the Link tab change the Settings For: menu to

Win32 Release. In the Object/library modules field enter the location of the

trek_user_api.lib file which would be trek_user_api.lib.

4. Now is a good time to rebuild and execute the application just to make sure

everything is okay. Once you have done this move on to the next step.

5. You’re almost done. You just have a few more steps to complete. Go to the

FileView list in the Visual C++ window and double click on the CyclicView.cpp file.

It’s now time to fill in the OnUpdate(), OnUpdateStart(), and OnUpdateStop()

message handlers.

6. Locate the OnUpdate() function and make your function look like the following one.

This function updates the main window with the newest MSID038 values.

void CCyclicView::OnUpdate(CView* pSender, LPARAM lHint, CObject*pHint)

{

// TODO: Add your specialized code here and/or call the base

// class

 CCyclicDoc *pDoc = GetDocument();

 m_msid038_int_value = pDoc->msid038_int_value;

 m_msid038_int_status = pDoc->msid038_int_status;

 m_msid038_int_api = pDoc->msid038_int_api;

 UpdateData(FALSE);

}

TREK-USER-007

 54

7. Locate the OnUpdateStart() function and make your function look like the following

one. This function calls the document class to create the timer thread. The timer

thread will send a message to the View class once every second telling it to call the

document class which will then call the TReK API to get the newest MSID038 data.

void CCyclicView::OnUpdateStart()

{

 // TODO: Add your command handler code here

 CCyclicDoc *pDoc = GetDocument();

 HWND view_handle;

 CUpdateInfo *info_ptr = new CUpdateInfo();

 view_handle = this->m_hWnd;

 info_ptr->view_handle = view_handle;

 // Set the update rate to 1000 milliseconds.

 info_ptr->update_rate = 1000;

 pDoc->StartUpdate(info_ptr);

}

8. Locate the OnUpdateStop() function and make your function look like the following

one. This function kills the user interface thread so the display stops updating.

void CCyclicView::OnUpdateStop()

{

 // TODO: Add your command handler code here

 CCyclicDoc *pDoc = GetDocument();

 pDoc->StopUpdate();

}

TREK-USER-007

 55

9. Now you need to make the final updates to the Document class. In the Files list

double click on the CyclicDoc.cpp file to open it. Find the list of include files

located near the top of the file and add references to the following include files:

#include "trek.h"

#include "trek_error.h"

#include "trek_user_api.h"

Note: If these statements are added before the #include ‘‘stdafx.h’’ statement this

will cause compile errors.

10.Now you need to make sure these files are located in your Cyclic project directory.

You can copy these files out of the TReK installation directory. They are located

under include. Copy the trek.h, trek_error.h, and trek_user_api.h files into your

Cyclic project directory.

11. In the CyclicDoc.cpp file find the CCyclicDoc::StartUpdate(CUpdateInfo

*info_ptr) function and update it so it matches the following function. When the

user selects Start from the Update menu the StartUpdate message is sent. The

StartUpdate message handler shown below creates the timer thread.

void CCyclicDoc::StartUpdate(CUpdateInfo *info_ptr)

{

 thread_ptr = new CUpdateThread(info_ptr);

 thread_ptr->CreateThread();

 thread_handle = thread_ptr->m_hThread;

}

TREK-USER-007

 56

12. In the CyclicDoc.cpp file find the CCyclicDoc::StartUpdate() function and

update it so it matches the following function. When the user selects Stop from the

Update menu the StopUpdate message is sent. The StopUpdate message handler

shown below terminates the timer thread.

void CCyclicDoc::StopUpdate()

{

 DWORD dwExitCode = 0;

 TerminateThread(thread_handle, dwExitCode);

 delete thread_ptr;

}

13. In the CyclicDoc.cpp file find the CCyclicDoc::GetNewData() function and update

it so it matches the following function. Remember you can copy this code out of the

TReK examples directory. It is located in the CyclicDoc.cpp file in the

examples\VisualC++\Cyclic directory.

void CCyclicDoc::GetNewData()

{

 // Declare Variables used with API Functions.

 int stream;

 int data_mode;

 char identifier[MSID_LEN];

 char apid[20];

 int return_code;

 long integer_value;

 char status[STATUS_LEN];

 int limit_es_flag;

 // Set up generic input variables.

 stream = PDSS_PAYLOAD;

 data_mode = REAL_TIME;

 limit_es_flag = LES_SENSE;

 strcpy(apid, "");

 strcpy(identifier, "MSID038");

 strcpy(msid038_int_api, "");

 // Call the GetNewestConvertedIntegerValue function in

 // the User API.

 return_code = GetOneNewestConvertedIntegerValue(stream,

 identifier,

 apid,

 data_mode,

 limit_es_flag,

 msid038_con_token,

TREK-USER-007

 57

 &integer_value,

 status);

 if (return_code == SUCCESS)

 {

 // Copy the data into the document class member variables.

 msid038_int_value = integer_value;

 msid038_int_status = status;

 }

 GetAPIReturnCodeAsString(return_code, 70, msid038_int_api);

}

14. That’s it. This concludes Part IV. All you need to do now is to rebuild and execute

the application. Don’t forget to start the Telemetry Processing application before

you run your Cyclic Display. MSID038 is in Packet ID 7. Packet ID 7 is defined in

the TReK Telemetry Database (TelemetryDatabase.mdb). Be sure to Activate this

packet in the Telemetry Processing application and send it from the Training

Simulator application. If you don’t you won’t see any data.

TREK-USER-007

 58

5 Some Final Notes About This Tutorial

 Please remember that it is not a good idea to force the termination of a thread using

TerminateThread. This does not give the thread a chance to clean up any resources it

may be using. Please see your Microsoft documentation for information on how to

send a message to the thread to tell it to exit.

 During this tutorial we had you copy several files out of the TReK Installation

directory into your own Cyclic project directory. It is probably a better idea to

reference these files instead of copying them. That way, when you receive a new set

of TReK files, your projects will always be pointing to the latest version. Otherwise

when you get new TReK files you will need to copy the new version of these files

into each of your project directories. However, either way will work. To tell Visual

C++ how to find libraries and header files you can use the Visual C++ Options

dialog. If you go to the Tools menu and choose Options… the dialog in Figure 44

will appear. This dialog provides a way to tell Visual C++ where to look for include

files and library files. Make sure the Show Directories for: menu has Include files

selected. Select the empty frame and type in the entire path for the TReK include

directory. Library files can be handled in the same way. Just change the Show

Directories for: menu to Library files and type in the path for the TReK lib directory.

Figure 44 Options Dialog.

 The program you created during this tutorial can be modified and used to create other

displays. The timer thread files can easily be used in other Visual C++ applications

that need to update telemetry data in a cyclic fashion. When you get ready to build a

TREK-USER-007

 59

new display, you can save some time by starting with a copy of the Cyclic display

and making the necessary modifications. In general, you would make modifications

in the following areas:

1. Change the controls in the main window (and their corresponding member

variables) to display a different set of parameters (MSIDs).

2. Update the View class so it matches the controls and member variables added

in step 1 above.

3. Update the Document class so the correct API calls are made for the

parameters added in step1 above.

Well…. That’s All Folks!!!! This concludes the How to Build a Visual C++ Display

tutorial. We hope you learned a lot and had a good time!

TREK-USER-007

 60

Appendix A Glossary
Note: This Glossary is global to all TReK documentation. All entries listed may not be

referenced within this document.

Application Programming Interface

(API)

A set of functions used by an application program

to provide access to a system’s capabilities.

Application Process Identifier

(APID)

An 11-bit field in the CCSDS primary packet

header that identifies the source-destination pair

for ISS packets. The type bit in the primary header

tells you whether the APID is a payload or system

source-destination.

Calibration The transformation of a parameter to a desired

physical unit or text state code.

Communications Outage Recorder System that captures and stores payload science,

health and status, and ancillary data during TDRSS

zone of exclusion.

Consultative Committee for Space

Data Systems (CCSDS) format

Data formatted in accordance with

recommendations or standards of the CCSDS.

Consultative Committee for Space

Data Systems (CCSDS) packet

A source packet comprised of a 6-octet CCSDS

defined primary header followed by an optional

secondary header and source data, which together

may not exceed 65535 octets.

Conversion Transformation of downlinked spacecraft data

types to ground system platform data types.

Custom Data Packet A packet containing a subset of parameters that

can be selected by the user at the time of request.

Cyclic Display Update Mode A continuous update of parameters for a particular

display.

Decommutation (Decom) Extraction of a parameter from telemetry.

Discrete Values Telemetry values that have states (e.g., on or off).

TREK-USER-007

 61

Dump During periods when communications with the

spacecraft are unavailable, data is recorded

onboard and played back during the next period

when communications resume. This data, as it is

being recorded onboard, is encoded with an

onboard embedded time and is referred to as dump

data.

Enhanced HOSC System (EHS) Upgraded support capabilities of the HOSC

systems to provide multi-functional support for

multiple projects. It incorporates all systems

required to perform data acquisition and

distribution, telemetry processing, command

services, database services, mission support

services, and system monitor and control services.

Exception Monitoring A background process capable of continuously

monitoring selected parameters for Limit or

Expected State violations. Violation notification is

provided through a text message.

Expected State Sensing Process of detecting a text state code generator in

an off-nominal state.

EXPRESS An EXPRESS Rack is a standardized payload rack

system that transports, stores and supports

experiments aboard the International Space

Station. EXPRESS stands for EXpedite the

PRocessing of Experiments to the Space Station.

File transfer protocol (ftp) Protocol to deliver file-structured information from

one host to another.

Flight ancillary data A set of selected core system data and payload

health and status data collected by the USOS

Payload MDM, used by experimenters to interpret

payload experiment results.

TREK-USER-007

 62

Grayed out Refers to a menu item that has been made

insensitive, which is visually shown by making the

menu text gray rather than black. Items that are

grayed out are not currently available.

Greenwich Mean Time (GMT) The solar time for the meridian passing through

Greenwich, England. It is used as a basis for

calculating time throughout most of the world.

Ground ancillary data A set of selected core system data and payload

health and status data collected by the POIC,

which is used by experimenters to interpret

payload experiment results. Ground Ancillary

Data can also contain computed parameters

(pseudos).

Ground receipt time Time of packet origination. The time from the

IRIG-B time signal received.

Ground Support Equipment (GSE) GSE refers to equipment that is brought in by the

user (i.e. equipment that is not provided by the

POIC).

Ground Support Equipment Packet A CCSDS Packet that contains data extracted from

any of the data processed by the Supporting

Facility and the format of the packet is defined in

the Supporting Facility’s telemetry database.

Huntsville Operations Support

Center (HOSC)

A facility located at the Marshall Space Flight

Center (MSFC) that provides scientists and

engineers the tools necessary for monitoring,

commanding, and controlling various elements of

space vehicle, payload, and science experiments.

Support consists of real-time operations planning

and analysis, inter- and intra-center ground

operations coordination, facility and data system

resource planning and scheduling, data systems

monitor and control operations, and data flow

coordination.

TREK-USER-007

 63

IMAQ ASCII A packet type that was added to TReK to support a

very specific application related to NASA’s Return

to Flight activities. It is not applicable to ISS. It is

used to interface with an infrared camera that

communicates via ASCII data.

Limit Sensing Process of detecting caution and warning

conditions for a parameter with a numerical value.

Line Outage Recorder Playback A capability provided by White Sands Complex

(WSC) to play back tapes generated at WSC

during ground system communication outages.

Measurement Stimulus Identifier

(MSID)

Equivalent to a parameter.

Monitoring A parameter value is checked for sensing

violations. A message is generated if the value is

out of limits or out of an expected state.

Parameter TReK uses the generic term parameter to mean any

piece of data within a packet. Sometimes called a

measurement or MSID in POIC terminology.

Payload Data Library (PDL) An application that provides the interface for the

user to specify which capabilities and requirements

are needed to command and control his payload.

Payload Data Services Systems

(PDSS)

The data distribution system for ISS. Able to route

data based upon user to any of a number of

destinations.

Payload Health and Status Data Information originating at a payload that reveals

the payload’s operational condition, resource

usage, and its safety/anomaly conditions that could

result in damage to the payload, its environment or

the crew.

Payload Operations Integration

Center (POIC)

Manages the execution of on-orbit ISS payloads

and payload support systems in

coordination/unison with distributed International

Partner Payload Control Centers, Telescience

Support Centers (TSC’s) and payload-unique

remote facilities.

TREK-USER-007

 64

Payload Rack Checkout Unit

(PRCU)

The Payload Rack Checkout Unit is used to verify

payload to International Space Station interfaces

for U.S. Payloads.

Playback Data retrieved from some recording medium and

transmitted to one or more users.

Pseudo Telemetry (pseudo data) Values that are created from calculations instead of

directly transported telemetry data. This pseudo

data can be created from computations or scripts

and can be displayed on the local PC.

Remotely Generated Command A command sent by a remote user whose content

is in a raw bit pattern format. The commands

differ from predefined or modifiable commands in

that the content is not stored in the POIC Project

Command Database (PCDB).

Science data Sensor or computational data generated by

payloads for the purpose of conducting scientific

experiments.

Subset A collection of parameters from the total

parameter set that is bounded as an integer number

of octets but does not constitute the packet itself.

A mini-packet.

Super sampled A parameter is super sampled if it occurs more

than once in a packet.

Swap Type A flag in the Parameter Table of the TReK

database that indicates if the specified datatype is

byte swapped (B), word swapped (W), byte and

word swapped (X), byte reversal (R), word

reversal (V) or has no swapping (N).

Switching A parameter’s value can be used to switch between

different calibration and sensing sets. There are

two types of switching on TReK: range and state

code.

TREK-USER-007

 65

Transmission Control Protocol

(TCP)

TCP is a connection-oriented protocol that

guarantees delivery of data.

Transmission Control Protocol

(TCP) Client

A TCP Client initiates the TCP connection to

connect to the other party.

Transmission Control Protocol

(TCP) Server

A TCP Server waits for (and accepts connections

from) the other party.

Telemetry Transmission of data collected form a source in

space to a ground support facility. Telemetry is

downlink only.

Telescience Support Center (TSC) A TSC is a NASA funded facility that provides the

capability to plan and operate on-orbit facility

class payloads and experiments, other payloads

and experiments, and instruments.

User Application Any end-user developed software program that

uses the TReK Application Programming Interface

software. Used synonymously with User Product.

User Data Summary Message

(UDSM)

Packet type sent by PDSS that contains

information on the number of packets sent during a

given time frame for a PDSS Payload packet. For

details on UDSM packets, see the POIC to Generic

User IDD (SSP-50305).

Uplink format The bit pattern of the command or file uplinked.

User Datagram Protocol (UDP) UDP is a connection-less oriented protocol that

does not guarantee delivery of data. In the TCP/IP

protocol suite, the UDP provides the primary

mechanism that application programs use to send

datagrams to other application programs. In

addition to the data sent, each UDP message

contains both a destination port number and a fully

qualified source and destination addresses making

it possible for the UDP software on the destination

to deliver the message to the correct recipient

process and for the recipient process to send a

reply.

TREK-USER-007

 66

User Product Any end-user developed software program that

uses the TReK Application Programming Interface

software. Used synonymously with User

Application.

Web Term used to indicate access via HTTP protocol;

also referred to as the World Wide Web (WWW).

TREK-USER-007

 67

Appendix B Acronyms
Note: This acronym list is global to all TReK documentation. Some acronyms listed

may not be referenced within this document.

AOS Acquisition of Signal

API Application Programming Interface

APID Application Process Identifier

ASCII American Standard Code for Information Interchange

CAR Command Acceptance Response

CAR1 First Command Acceptance Response

CAR2 Second Command Acceptance Response

CCSDS Consultative Committee for Space Data Systems

CDB Command Database

CDP Custom Data Packet

COR Communication Outage Recorder

COTS Commercial-off-the-shelf

CRR Command Reaction Response

DSM Data Storage Manager

EHS Enhanced Huntsville Operations Support Center (HOSC)

ERIS EHS Remote Interface System

ERR EHS Receipt Response

EXPRESS Expediting the Process of Experiments to the Space Station

ES Expected State

FAQ Frequently Asked Question

FDP Functionally Distributed Processor

FSV Flight System Verifier

FSV1 First Flight System Verifier

FSV2 Second Flight System Verifier

FPD Flight Projects Directorate

FTP File Transfer Protocol

GMT Greenwich Mean Time

GRT Ground Receipt Time

GSE Ground Support Equipment

HOSC Huntsville Operations Support Center

ICD Interface Control Document

IMAQ ASCII Image Acquisition ASCII

IP Internet Protocol

ISS International Space Station

LDP Logical Data Path

LES Limit/Expected State

LOR Line Outage Recorder

LOS Loss of Signal

MCC-H Mission Control Center – Houston

MOP Mission, Operational Support Mode, and Project

MSFC Marshall Space Flight Center

TREK-USER-007

 68

MSID Measurement Stimulus Identifier

NASA National Aeronautics and Space Administration

OCDB Operational Command Database

OS Operating System

PC Personal Computer, also Polynomial Coefficient

PCDB POIC Project Command Database

PDL Payload Data Library

PDSS Payload Data Services System

PGUIDD POIC to Generic User Interface Definition Document

POIC Payload Operations Integration Center

PP Point Pair

PRCU Payload Rack Checkout Unit

PSIV Payload Software Integration and Verification

RPSM Retrieval Processing Summary Message

SC State Code

SCS Suitcase Simulator

SSP Space Station Program

SSCC Space Station Control Center

SSPF Space Station Processing Facility

TCP Transmission Control Protocol

TReK Telescience Resource Kit

TRR TReK Receipt Response

TSC Telescience Support Center

UDP User Datagram Protocol

UDSM User Data Summary Message

URL Uniform Resource Locator

USOS United States On-Orbit Segment

VCDU Virtual Channel Data Unit

VCR Video Cassette Recorder

VPN Virtual Private Network

