
TREK-USER-010

TREK

HOW TO PROCESS YOUR OWN DATA

TUTORIAL

November 2012

TREK-USER-010

 i

TABLE OF CONTENTS

PARAGRAPH PAGE

1 What You Need To Know Before You Read This Document 1

2 Technical Support ... 1

3 Introduction ... 1

4 Example ... 2

4.1 Overview .. 2
4.2 Extracting Data... 3

4.2.1 Extracting Data With A False Parameter Name .. 4
4.2.2 Extracting Data From A Subset .. 4

4.3 Converting Data ... 5
4.3.1 Converting A “Weird Sign and Magnitude Integer” .. 5
4.3.2 Converting A Binary Coded Floating Point Number.. 6

4.4 Using Pseudo Values to make the data available to other applications .. 7
4.5 Trying It Out .. 9

Appendix A Source Listing (main.cpp) ... 10

Appendix B Glossary .. 15

Appendix C Acronyms ... 22

TREK-USER-010

 ii

FIGURES

FIGURE PAGE
Figure 1 Packet 6 Contents ... 3
Figure 2 Subset 17 Contents ... 3

TREK-USER-010

 iii

CODE LISTINGS

LISTING PAGE
Listing 1 Extracting Data With A False MSID .. 4
Listing 2 Extracting A Subset ... 5
Listing 3 Converting A Word Swapped Unsigned Integer ... 6
Listing 4 Converting A Binary Coded Floating Point Number .. 7
Listing 5 Creating A Pseudo Parameter .. 8
Listing 6 Updating A Pseudo Parameter .. 8
Listing 7 Getting The Newest Pseudo Value .. 8

TREK-USER-010

 1

1 What You Need To Know Before You Read This Document

Processing your own data is considered an advanced topic. Before reading this document

you should be familiar with the material in the following TReK documents: TReK

Telemetry Tutorial (TREK-USER-002), TReK Telemetry Processing User Guide

(TREK-USER-003), TReK Training Simulator (TREK-USER-004), TReK How To

Build A Computation With Visual C++ Tutorial (TREK-USER-009), and TReK

Telemetry Application Programming Interface Reference Manual (TREK-USER-027).

2 Technical Support

If you are having trouble installing the TReK software or using any of the TReK software

applications, please try the following suggestions:

Read the appropriate material in the manual and/or on-line help.

Ensure that you are correctly following all instructions.

Checkout the TReK Web site at http://trek.msfc.nasa.gov/ for Frequently Asked

Questions.

If you are still unable to resolve your difficulty, please contact us for technical assistance:

TReK Help Desk E-Mail, Phone & Fax:

E-Mail: trek.help@nasa.gov

Telephone: 256-544-3521 (8:00 a.m. - 4:30 p.m. Central Time)

Fax: 256-544-9353

TReK Help Desk hours are 8:00 a.m. – 4:30 p.m. Central Time Monday through Friday.

If you call the TReK Help Desk and you get a recording please leave a message and

someone will return your call. E-mail is the preferred contact method for help. The e-

mail message is automatically forwarded to the TReK developers and helps cut the

response time.

3 Introduction

TReK is capable of processing all of the composition types defined in MSFC HOSC

Telemetry Format Standards Volume 2 (MSFC-STD-1274) and the data types described

in the TReK Telemetry Tutorial (TREK-USER-002). However, if some or all of your

data does not meet the standards defined in these documents, you can still use the TReK

Application Programming Interface to help you process your own data.

TREK-USER-010

 2

There are two cases that will cause you to have to process your own data. The first is that

you have a data type that is not supported by TReK. Even though this parameter may not

be convertible by TReK, TReK may be able to pull the individual parameter out of the

packet for you. If you have defined the parameter with a false data type in the database

(e.g., the parameter is 24 bits long and you have assigned it a data type of IUND, even

though the bits represent a floating point number), TReK can pull the raw value of the

parameter out of the packet for you to convert. If this parameter has not been placed in

the database, then TReK can provide you the entire packet or subset that you need to

perform the extraction on. The second case that will cause you to have to process your

own data is if you use a composition/sampling type that is not included in MSFC-STD-

1274 Volume 2. In this case, you would request the entire packet or subset from TReK

(through the TReK API) and process the entire packet/subset or the portion of it that

contains the needed parameter(s).

This tutorial shows you how to process your data using a computation written in C. Once

the data is processed, it will be made available to other applications using the pseudo

parameter capability.

4 Example

The example in this section assumes you understand the C programming language. The

computation does not use any C++ code even though the example code is contained in a

Visual C++ project. The code listings in this section are from the complete example in

Appendix A.

4.1 Overview

The packet shown in Figure 1 is available in the TReK TelemetryDatabase.mdb Database

(APID = 6). It is a PDSS Payload packet consisting of two parameters and a subset.

TReK will automatically process all of the data in the EHS and CCSDS headers. TReK

will also extract the two parameters and the subset from the packet. The first parameter

(M_N_IUNS_32) is a 32 bit unsigned integer. TReK knows how to process this type of

data, so you could get the value of the data from TReK using any of the

Get…ConvertedUnsignedIntegerValue() function calls in the TReK User API. The

second parameter is a 32-bit “weird sign and magnitude integer.” (No, this doesn’t really

exist, but it will work for the example.) TReK cannot convert this data type for you.

However, the parameter is defined in the database as a 32-bit Undefined Integer. This

will allow TReK to extract the raw value of the parameter from the packet so you can

convert the data using your own conversion software.

TREK-USER-010

 3

EHS

Primary

Header

PDSS

Payload

Secondary

Header

CCSDS

Primary

Header

CCSDS

Secondary

Header

M_USER_IUND_32 Subset 17M_N_IUNS_32

Figure 1 Packet 6 Contents

The subset contained in this packet has data that is not defined in the database. Figure 2

shows the contents of the subset. The 12 bytes of undefined data in the subset consist of

three binary coded floating-point numbers. (See Section 4.3.2 for the definition of a

binary coded floating-point number.)

Subset

ID = 14

Subset

Format = 1

12 Bytes of data not defined

in the database

Figure 2 Subset 17 Contents

NOTE: All of the functions for this example are located in the main.cpp file of the

Visual C++ project UserComp. A complete source listing can be found in Appendix A.

This computation can be found in the TReK installation directory under examples.

4.2 Extracting Data

This example shows two different ways of extracting data from a packet to process with

your own code. The first is using a false parameter name to identify the parameter within

the packet and allowing the TReK software to extract the raw data. It is suggested that

you use the Undefined Integer (IUND) data type on data that is up to 64 bits long. If the

data is greater than 64 bits and on a byte boundary use the Undefined Byte String

(SUND) data type (MSFC-STD-1274 allows this data type to be up to 255 bytes).

Using one of these two data types will keep you from getting a converted value that is

incorrect. For example, if the “weird sign and magnitude integer” in this example was

defined as an IMAG in the database, you could use one of the

Get…ConvertedIntegerValue() functions to get the converted value. However, the

converted value would be incorrect.

The second method of extracting the data is to obtain the entire subset and extract the

parameters within your own code. This method could also be applied to the entire packet

of data.

For both of the above methods, you will use one of the Get…RawValue() functions in the

TReK API.

TREK-USER-010

 4

4.2.1 Extracting Data With A False Parameter Name

If the parameter has a definition in the database, you can use this definition to extract the

raw value out of the packet. The code segment shown in Listing 1 will get the newest

raw value received by TReK for the M_USER_IUND_32 parameter.

Listing 1 Extracting Data With A False MSID

If the function completes successfully, the value stored in raw_value can then be passed

to a function to convert the data to the correct type.

4.2.2 Extracting Data From A Subset

If an MSID has not been defined for the individual parameters, you can get the entire

subset or packet containing the data and process the subset or packet yourself. The code

segment shown in Listing 2 will get the newest raw value received by TReK for subset

17.

int msid_token[TOKEN_SIZE];

int return_value;

unsigned char raw_value[20]; /* need enough space for the data */

long size_of_data;

char status[STATUS_LEN]; /* status string */

size_of_data = 20;

return_value = GetOneNewestRawValue(PDSS_PAYLOAD,

 MSID,

 "M_USER_IUND_32",

 "",

 REAL_TIME,

 msid_token,

 &size_of_data,

 raw_value,

 status);

TREK-USER-010

 5

Listing 2 Extracting A Subset

If the function completes successfully, the value stored in raw_value can then be

processed to pull out individual parameters with your own code.

4.3 Converting Data

This section describes conversion of two data types not supported by MSFC-STD-1274.

The example code in this section is intended to show you how you might process the two

data types with a user computation. The example code is not part of TReK Telemetry

Processing.

4.3.1 Converting A “Weird Sign and Magnitude Integer”

This data type has the sign bit in the least significant bit of the data. The first 31 bits of

the data is the magnitude. The code segment in Listing 3 will convert the “weird sign and

magnitude integer” to the local data type (long).

int subset_token[TOKEN_SIZE];

int return_value;

unsigned char raw_value[20]; /* need enough space for the data */

long size_of_data;

char status[STATUS_LEN]; /* status string */

size_of_data = 20;

return_value = GetOneNewestRawValue(PDSS_PAYLOAD,

SUBSET,

"17",

"",

REAL_TIME,

subset_token,

&size_of_data,

raw_value,

status);

TREK-USER-010

 6

Listing 3 Converting A Word Swapped Unsigned Integer

4.3.2 Converting A Binary Coded Floating Point Number

A binary coded floating point number is four bytes long. Each nibble of data represents a

decimal digit. There is an implied decimal point between the second and third byte of

data. For example, the hex pattern 0x12345678 would be converted to 1234.5678. The

function in Listing 4 will convert the input data to a double precision floating-point

number.

long ConvertWeirdSignAndMagnitudeInteger(unsigned char

*raw_data)

{

 unsigned char tmp_raw[4];

 long tmp_int;

 BOOL is_negative;

 /* byte and word swap the input */

 tmp_raw[0] = raw_data[3];

 tmp_raw[1] = raw_data[2];

 tmp_raw[2] = raw_data[1];

 tmp_raw[3] = raw_data[0];

 /* see if value is negative */

 if(tmp_raw[0] & 0x01)

 is_negative = TRUE;

 else

 is_negative = FALSE;

 /* shift data right one bit ("sign" bit will be lost) */

 tmp_int = *(long *)tmp_raw;

 tmp_int >>= 1;

 /* if input was negative change the sign */

 if(is_negative)

 tmp_int = -tmp_int;

 return(tmp_int);

}

TREK-USER-010

 7

Listing 4 Converting A Binary Coded Floating Point Number

4.4 Using Pseudo Values to make the data available to other applications

Since you had to convert the data yourself, the normal Get…Converted…Value() calls

cannot be used by other applications to get the converted data. The best way to share the

converted data with other applications is to create a pseudo parameter for each value you

want to share. The code segment in Listing 5 shows how to create a pseudo parameter

for a double precision floating-point number.

double ConvertBinaryCodedFloat(unsigned char *data)

{

 char double_string[10];

 unsigned char tmp_value;

 tmp_value = (data[0] & 0xf0) >> 4;

 double_string[0] = tmp_value + 0x30;

 tmp_value = (data[0] & 0x0f);

 double_string[1] = tmp_value + 0x30;

 tmp_value = (data[1] & 0xf0) >> 4;

 double_string[2] = tmp_value + 0x30;

 tmp_value = (data[1] & 0x0f);

 double_string[3] = tmp_value + 0x30;

 double_string[4] = '.';

 tmp_value = (data[2] & 0xf0) >> 4;

 double_string[5] = tmp_value + 0x30;

 tmp_value = (data[2] & 0x0f);

 double_string[6] = tmp_value + 0x30;

 tmp_value = (data[3] & 0xf0) >> 4;

 double_string[7] = tmp_value + 0x30;

 tmp_value = (data[3] & 0x0f);

 double_string[8] = tmp_value + 0x30;

 double_string[9] = '\0';

 return atof(double_string);

}

TREK-USER-010

 8

Listing 5 Creating A Pseudo Parameter

Once the pseudo value is created, you can update the value for each new packet of data

that arrives. The code segment in Listing 6 will update the value of a pseudo parameter.

You should use the same name for the update pseudo call that was used when the pseudo

was created.

Listing 6 Updating A Pseudo Parameter

Any other application needing to get the converted value of this pseudo can use the same

name used in CreatePseudo and call one of the Get…PseudoValue() functions. The code

segment in Listing 7 shows how an application can use the

GetOneNewestDoublePseudoValue() function to get the AverageTemp.

Listing 7 Getting The Newest Pseudo Value

int return_value; /* generic return value */

double average_value; /* converted value */

return_value = UpdateOneDoublePseudo("AverageTemp",

 average_value);

int return_value;

long token[TOKEN_SIZE];

double value;

char status[STATUS_LEN];

return_value = GetOneNewestDoublePseudoValue("AverageTemp",

 token,

 &value,

 status);

int pseudo_created; /* return value for CreatePseudo */

pseudo_created = CreatePseudo("AverageTemp",

 DOUBLE_DATATYPE,

 1, // Storing one sample at a time

 0 // Only used for strings and raw

);

TREK-USER-010

 9

4.5 Trying It Out

You can run the computation above by either copying the code in Appendix A into

Visual C++ and compiling it or compiling UserComp from the examples directory under

the TReK installation directory.

You will need to set up the Training Simulator and Telemetry Processing application to

use packet 6. Packet 6 contains the data described in Figure 1 and Figure 2. For more

information on using the Training Simulator see the TReK Training Simulator User

Guide (TREK-USER-004). For more information on using the Telemetry Processing

application see the TReK Telemetry Processing User Guide (TREK-USER-003).

TREK-USER-010

 10

Appendix A Source Listing (main.cpp)
#include <afx.h>

#include "trek_user_api.h"

/**

 *

 * The ConvertWeirdSignAndMagnitudeInteger function converts the

 * first four bytes of data pointed to by raw_data to an integer

 * value. The integer datatype is word swapped and byte swapped on

 * this platform. The sign bit is the least significant bit of the

 * input data. Native data type for signed integer is two's

 * complement.

 *

 ***/

long ConvertWeirdSignAndMagnitudeInteger(unsigned char *raw_data)

{

 unsigned char tmp_raw[4];

 long tmp_int;

 BOOL is_negative;

 /* byte and word swap the input */

 tmp_raw[0] = raw_data[3];

 tmp_raw[1] = raw_data[2];

 tmp_raw[2] = raw_data[1];

 tmp_raw[3] = raw_data[0];

 /* see if value is negative */

 if(tmp_raw[0] & 0x01)

 is_negative = TRUE;

 else

 is_negative = FALSE;

 /* shift data right one bit ("sign" bit will be lost) */

 tmp_int = *(long *)tmp_raw;

 tmp_int >>= 1;

 /* if input was negative change the sign */

 if(is_negative)

 tmp_int = -tmp_int;

 return(tmp_int);

}

/**

 *

 * The ConvertBinaryCodedFloat function converts the first four

 * bytes pointed to by data to a floating point number. Each byte

 * of data contains two digits. The decimal point is assumed to be

 * between the second and third byte of data (xxxx.xxxx).

 *

 ***/

TREK-USER-010

 11

double ConvertBinaryCodedFloat(unsigned char *data)

{

 char double_string[10];

 unsigned char tmp_value;

 tmp_value = (data[0] & 0xf0) >> 4;

 double_string[0] = tmp_value + 0x30;

 tmp_value = (data[0] & 0x0f);

 double_string[1] = tmp_value + 0x30;

 tmp_value = (data[1] & 0xf0) >> 4;

 double_string[2] = tmp_value + 0x30;

 tmp_value = (data[1] & 0x0f);

 double_string[3] = tmp_value + 0x30;

 double_string[4] = '.';

 tmp_value = (data[2] & 0xf0) >> 4;

 double_string[5] = tmp_value + 0x30;

 tmp_value = (data[2] & 0x0f);

 double_string[6] = tmp_value + 0x30;

 tmp_value = (data[3] & 0xf0) >> 4;

 double_string[7] = tmp_value + 0x30;

 tmp_value = (data[3] & 0x0f);

 double_string[8] = tmp_value + 0x30;

 double_string[9] = '\0';

 return atof(double_string);

}

void main(void)

{

 FILE *fp; /* output file for data */

 int return_value; /* generic return value */

 int pseudo_created; /* return value for CreatePseudo */

 int ii; /* loop counter */

 long size_of_data; /* size of raw data */

 char status[STATUS_LEN]; /* status string value */

 unsigned char raw_value[20]; /* subset is 14 bytes long */

 long msid_token[TOKEN_SIZE]; /* token for msid raw value */

 long subset_token[TOKEN_SIZE]; /* token for subset raw value */

 double high_value; /* converted value */

 double low_value; /* converted value */

 double average_value; /* converted value */

 unsigned long conv_value; /* converted value */

 /*

 * Create the output file in the directory the computation is

 * executing. If the file cannot be opened, exit.

 */

 if((fp = fopen("output.txt", "w")) == NULL)

 {

 printf("Error opening output.txt file. Exiting...\n");

TREK-USER-010

 12

 return;

 }

 /*

 * Create a pseudo parameter for the average temperature. Other

 * user applications will use the same name to reference the

 * value.

 */

 pseudo_created = CreatePseudo("AverageTemp",

 DOUBLE_DATATYPE,

 1, // Storing one sample at a time

 0 // Only used for strings and raw

);

 if(pseudo_created != SUCCESS)

 fprintf(fp, "Psuedo value for AverageTemp not created\n\n");

 /*

 * Get 50 samples of data and write values to the output file.

 * Update the value for the AverageTemp pseudo each time.

 */

 for(ii = 1; ii <= 50; ii++)

 {

 /*

 * Get the newest value for msid M_USER_IUND_32. Convert

 * the value to an unsigned integer and write its value to

 * the output file.

 */

 size_of_data = 20;

 return_value = GetOneNewestRawValue

 (

 PDSS_PAYLOAD,

 MSID,

 "M_USER_IUND_32",

 "",

 REAL_TIME,

 msid_token,

 &size_of_data,

 raw_value,

 status

);

 if(return_value != SUCCESS)

 {

 fprintf(fp, "Error getting value %d for MSID.\n", ii);

 fprintf(fp, "Error number %d\n\n", return_value);

 }

 else

 {

 if(status[2] == 'S')

 fprintf(fp, "Data is stale\n");

TREK-USER-010

 13

 conv_value =

 ConvertWeirdSignAndMagnitudeInteger(raw_value);

 fprintf(fp, "Sample Number %d\n", ii);

 fprintf(fp, "Value: %d\n\n", conv_value);

 }

 /*

 * Get the newest value for subset 17. The subset contains

 * three binary coded floating point numbers. Convert each

 * value and write it to the output file. Update the value

 * of the pseudo parameter AverageTemp with the newest data.

 */

 size_of_data = 20;

 return_value = GetOneNewestRawValue

 (

 PDSS_PAYLOAD,

 SUBSET,

 "17",

 "",

 REAL_TIME,

 subset_token,

 &size_of_data,

 raw_value,

 status

);

 if(return_value != SUCCESS)

 {

 fprintf(fp, "Error getting value %d for subset.", ii);

 fprintf(fp, "Error number %d\n\n", return_value);

 }

 else

 {

 if(status[2] == 'S')

 fprintf(fp, "Data is stale\n");

 high_value = ConvertBinaryCodedFloat(&(raw_value[2]));

 low_value = ConvertBinaryCodedFloat(&(raw_value[6]));

 average_value = ConvertBinaryCodedFloat(&(raw_value[10]));

 fprintf(fp, "Sample Number %d\n", ii);

 fprintf(fp, "High Value: %lg\n", high_value);

 fprintf(fp, "Low Value: %lg\n", low_value);

 fprintf(fp, "Average Value: %lg\n\n", average_value);

 if(pseudo_created == SUCCESS)

 {

 return_value = UpdateOneDoublePseudo(

 "AverageTemp",

 average_value);

 if(return_value != SUCCESS)

TREK-USER-010

 14

 {

 fprintf(fp,

 "AverageTemp not updated for sample %d\n\n",

 ii);

 }

 }

 }

 Sleep(1000); /* wait one second before getting next sample */

 }

 fclose(fp);

}

TREK-USER-010

 15

Appendix B Glossary
Note: This Glossary is global to all TReK documentation. All entries listed may not be

referenced within this document.

Application Programming Interface

(API)

A set of functions used by an application program

to provide access to a system’s capabilities.

Application Process Identifier

(APID)

An 11-bit field in the CCSDS primary packet

header that identifies the source-destination pair

for ISS packets. The type bit in the primary header

tells you whether the APID is a payload or system

source-destination.

Calibration The transformation of a parameter to a desired

physical unit or text state code.

Communications Outage Recorder System that captures and stores payload science,

health and status, and ancillary data during TDRSS

zone of exclusion.

Consultative Committee for Space

Data Systems (CCSDS) format

Data formatted in accordance with

recommendations or standards of the CCSDS.

Consultative Committee for Space

Data Systems (CCSDS) packet

A source packet comprised of a 6-octet CCSDS

defined primary header followed by an optional

secondary header and source data, which together

may not exceed 65535 octets.

Conversion Transformation of downlinked spacecraft data

types to ground system platform data types.

Custom Data Packet A packet containing a subset of parameters that

can be selected by the user at the time of request.

Cyclic Display Update Mode A continuous update of parameters for a particular

display.

Decommutation (Decom) Extraction of a parameter from telemetry.

Discrete Values Telemetry values that have states (e.g., on or off).

TREK-USER-010

 16

Dump During periods when communications with the

spacecraft are unavailable, data is recorded

onboard and played back during the next period

when communications resume. This data, as it is

being recorded onboard, is encoded with an

onboard embedded time and is referred to as dump

data.

Enhanced HOSC System (EHS) Upgraded support capabilities of the HOSC

systems to provide multi-functional support for

multiple projects. It incorporates all systems

required to perform data acquisition and

distribution, telemetry processing, command

services, database services, mission support

services, and system monitor and control services.

Exception Monitoring A background process capable of continuously

monitoring selected parameters for Limit or

Expected State violations. Violation notification is

provided through a text message.

Expected State Sensing Process of detecting a text state code generator in

an off-nominal state.

EXPRESS An EXPRESS Rack is a standardized payload rack

system that transports, stores and supports

experiments aboard the International Space

Station. EXPRESS stands for EXpedite the

PRocessing of Experiments to the Space Station.

File transfer protocol (ftp) Protocol to deliver file-structured information from

one host to another.

Flight ancillary data A set of selected core system data and payload

health and status data collected by the USOS

Payload MDM, used by experimenters to interpret

payload experiment results.

TREK-USER-010

 17

Grayed out Refers to a menu item that has been made

insensitive, which is visually shown by making the

menu text gray rather than black. Items that are

grayed out are not currently available.

Greenwich Mean Time (GMT) The solar time for the meridian passing through

Greenwich, England. It is used as a basis for

calculating time throughout most of the world.

Ground ancillary data A set of selected core system data and payload

health and status data collected by the POIC,

which is used by experimenters to interpret

payload experiment results. Ground Ancillary

Data can also contain computed parameters

(pseudos).

Ground receipt time Time of packet origination. The time from the

IRIG-B time signal received.

Ground Support Equipment (GSE) GSE refers to equipment that is brought in by the

user (i.e. equipment that is not provided by the

POIC).

Ground Support Equipment Packet A CCSDS Packet that contains data extracted from

any of the data processed by the Supporting

Facility and the format of the packet is defined in

the Supporting Facility’s telemetry database.

Huntsville Operations Support

Center (HOSC)

A facility located at the Marshall Space Flight

Center (MSFC) that provides scientists and

engineers the tools necessary for monitoring,

commanding, and controlling various elements of

space vehicle, payload, and science experiments.

Support consists of real-time operations planning

and analysis, inter- and intra-center ground

operations coordination, facility and data system

resource planning and scheduling, data systems

monitor and control operations, and data flow

coordination.

TREK-USER-010

 18

IMAQ ASCII A packet type that was added to TReK to support a

very specific application related to NASA’s Return

to Flight activities. It is not applicable to ISS. It is

used to interface with an infrared camera that

communicates via ASCII data.

Limit Sensing Process of detecting caution and warning

conditions for a parameter with a numerical value.

Line Outage Recorder Playback A capability provided by White Sands Complex

(WSC) to play back tapes generated at WSC

during ground system communication outages.

Measurement Stimulus Identifier

(MSID)

Equivalent to a parameter.

Monitoring A parameter value is checked for sensing

violations. A message is generated if the value is

out of limits or out of an expected state.

Parameter TReK uses the generic term parameter to mean any

piece of data within a packet. Sometimes called a

measurement or MSID in POIC terminology.

Payload Data Library (PDL) An application that provides the interface for the

user to specify which capabilities and requirements

are needed to command and control his payload.

Payload Data Services Systems

(PDSS)

The data distribution system for ISS. Able to route

data based upon user to any of a number of

destinations.

Payload Health and Status Data Information originating at a payload that reveals

the payload’s operational condition, resource

usage, and its safety/anomaly conditions that could

result in damage to the payload, its environment or

the crew.

Payload Operations Integration

Center (POIC)

Manages the execution of on-orbit ISS payloads

and payload support systems in

coordination/unison with distributed International

Partner Payload Control Centers, Telescience

Support Centers (TSC’s) and payload-unique

remote facilities.

TREK-USER-010

 19

Payload Rack Checkout Unit

(PRCU)

The Payload Rack Checkout Unit is used to verify

payload to International Space Station interfaces

for U.S. Payloads.

Playback Data retrieved from some recording medium and

transmitted to one or more users.

Pseudo Telemetry (pseudo data) Values that are created from calculations instead of

directly transported telemetry data. This pseudo

data can be created from computations or scripts

and can be displayed on the local PC.

Remotely Generated Command A command sent by a remote user whose content

is in a raw bit pattern format. The commands

differ from predefined or modifiable commands in

that the content is not stored in the POIC Project

Command Database (PCDB).

Science data Sensor or computational data generated by

payloads for the purpose of conducting scientific

experiments.

Subset A collection of parameters from the total

parameter set that is bounded as an integer number

of octets but does not constitute the packet itself.

A mini-packet.

Super sampled A parameter is super sampled if it occurs more

than once in a packet.

Swap Type A flag in the Parameter Table of the TReK

database that indicates if the specified datatype is

byte swapped (B), word swapped (W), byte and

word swapped (X), byte reversal (R), word

reversal (V) or has no swapping (N).

Switching A parameter’s value can be used to switch between

different calibration and sensing sets. There are

two types of switching on TReK: range and state

code.

TREK-USER-010

 20

Transmission Control Protocol

(TCP)

TCP is a connection-oriented protocol that

guarantees delivery of data.

Transmission Control Protocol

(TCP) Client

A TCP Client initiates the TCP connection to

connect to the other party.

Transmission Control Protocol

(TCP) Server

A TCP Server waits for (and accepts connections

from) the other party.

Telemetry Transmission of data collected form a source in

space to a ground support facility. Telemetry is

downlink only.

Telescience Support Center (TSC) A TSC is a NASA funded facility that provides the

capability to plan and operate on-orbit facility

class payloads and experiments, other payloads

and experiments, and instruments.

User Application Any end-user developed software program that

uses the TReK Application Programming Interface

software. Used synonymously with User Product.

User Data Summary Message

(UDSM)

Packet type sent by PDSS that contains

information on the number of packets sent during a

given time frame for a PDSS Payload packet. For

details on UDSM packets, see the POIC to Generic

User IDD (SSP-50305).

Uplink format The bit pattern of the command or file uplinked.

User Datagram Protocol (UDP) UDP is a connection-less oriented protocol that

does not guarantee delivery of data. In the TCP/IP

protocol suite, the UDP provides the primary

mechanism that application programs use to send

datagrams to other application programs. In

addition to the data sent, each UDP message

contains both a destination port number and a fully

qualified source and destination addresses making

it possible for the UDP software on the destination

to deliver the message to the correct recipient

process and for the recipient process to send a

reply.

TREK-USER-010

 21

User Product Any end-user developed software program that

uses the TReK Application Programming Interface

software. Used synonymously with User

Application.

Web Term used to indicate access via HTTP protocol;

also referred to as the World Wide Web (WWW).

TREK-USER-010

 22

Appendix C Acronyms
Note: This acronym list is global to all TReK documentation. Some acronyms listed

may not be referenced within this document.

AOS Acquisition of Signal

API Application Programming Interface

APID Application Process Identifier

ASCII American Standard Code for Information Interchange

CAR Command Acceptance Response

CAR1 First Command Acceptance Response

CAR2 Second Command Acceptance Response

CCSDS Consultative Committee for Space Data Systems

CDB Command Database

CDP Custom Data Packet

COR Communication Outage Recorder

COTS Commercial-off-the-shelf

CRR Command Reaction Response

DSM Data Storage Manager

EHS Enhanced Huntsville Operations Support Center (HOSC)

ERIS EHS Remote Interface System

ERR EHS Receipt Response

EXPRESS Expediting the Process of Experiments to the Space Station

ES Expected State

FAQ Frequently Asked Question

FDP Functionally Distributed Processor

FSV Flight System Verifier

FSV1 First Flight System Verifier

FSV2 Second Flight System Verifier

FPD Flight Projects Directorate

FTP File Transfer Protocol

GMT Greenwich Mean Time

GRT Ground Receipt Time

GSE Ground Support Equipment

HOSC Huntsville Operations Support Center

ICD Interface Control Document

IMAQ ASCII Image Acquisition ASCII

IP Internet Protocol

ISS International Space Station

LDP Logical Data Path

LES Limit/Expected State

LOR Line Outage Recorder

LOS Loss of Signal

MCC-H Mission Control Center – Houston

MOP Mission, Operational Support Mode, and Project

MSFC Marshall Space Flight Center

MSID Measurement Stimulus Identifier

TREK-USER-010

 23

NASA National Aeronautics and Space Administration

OCDB Operational Command Database

OS Operating System

PC Personal Computer, also Polynomial Coefficient

PCDB POIC Project Command Database

PDL Payload Data Library

PDSS Payload Data Services System

PGUIDD POIC to Generic User Interface Definition Document

POIC Payload Operations Integration Center

PP Point Pair

PRCU Payload Rack Checkout Unit

PSIV Payload Software Integration and Verification

RPSM Retrieval Processing Summary Message

SC State Code

SCS Suitcase Simulator

SSP Space Station Program

SSCC Space Station Control Center

SSPF Space Station Processing Facility

TCP Transmission Control Protocol

TReK Telescience Resource Kit

TRR TReK Receipt Response

TSC Telescience Support Center

UDP User Datagram Protocol

UDSM User Data Summary Message

URL Uniform Resource Locator

USOS United States On-Orbit Segment

VCDU Virtual Channel Data Unit

VCR Video Cassette Recorder

VPN Virtual Private Network

