
TREK-USER-0004

 1

TREK

CCSDS FILE DELIVERY PROTOCOL

(CFDP) CONSOLE

USER GUIDE

April 2019

Approved for Public Release; Distribution is Unlimited.

TREK-USER-0004

 i

TABLE OF CONTENTS

PARAGRAPH PAGE

1 Welcome ... 1

1.1 Getting Started .. 1

2 Technical Support ... 1

3 Introduction ... 1

4 Overview of the User Interface .. 8

4.1 Console Menu ... 8

5 Quick Start Guides ... 16

5.1 How to Configure the Application ...16
5.2 How to Create a CFDP Dropbox ...27
5.3 How to Create an Encrypt or Decrypt Dropbox ...29
5.4 How to Create a Frag or Defrag Dropbox ..30
5.5 How to Turn on Message Logging ...32
5.6 How to Turn on Statistics Logging ..32
5.7 How to Turn on Metrics Logging ..35

6 Details ... 37

6.1 Configuration ...37
6.2 Transaction ...37
6.3 Messages and Message Logging ..38

7 FAQ and Troubleshooting ... 38

7.1 Is There an Easy Way to Transfer the Contents of a Directory? ..38
7.2 What is class1 and class2? ...38
7.3 What is “////”? ..39
7.4 Source and Destination Constraints ...39
7.5 My File Starts to Transfer and Then Stops ..39
7.6 Transfer Results When Item Exists at Destination ...39
7.7 Important Things to Know When Using the Get Primitive ..40
7.8 How Does Suspend Transactions Work? ...40
7.9 CFDP Transactions in an AOS/LOS Environment ..41
7.10 How Do I Include My Crypt User Passphrase in the CFDP Console App?41

TREK-USER-0004

 ii

TABLES

TABLES PAGE

Table 1 ION CFDP Transmission Parameters .. 4
Table 2 CFDP Directives .. 5
Table 3 CFDP Directive Format ... 5
Table 4 TReK CFDP Configuration File Parameters ..27
Table 5 Device Statistics ...34
Table 6 Packet Statistics ..35
Table 7 CFDP Metrics ...37

TREK-USER-0004

 1

1 Welcome

The Telescience Resource Kit (TReK) is a suite of software applications and libraries that

can be used to monitor and control assets in space or on the ground.

The TReK CFDP console application provides the capability to transfer files using the

Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol

(CFDP).

1.1 Getting Started

Start with the Introduction which provides an application overview. Next, try the Quick

Start Guides for “How Tos” for common functions. For help with details, reference the

Details section. See the FAQ and Troubleshooting section for helpful hints and solutions

to the common “gotchas”.

2 Technical Support

If you are having trouble installing the TReK software or using any of the TReK

software, please contact us for technical assistance:

TReK Help Desk E-Mail, Phone & Fax:

E-Mail: trek.help@nasa.gov

Telephone: 256-544-3521 (8:00 a.m. - 4:00 p.m. Central Time)

Fax: 256-544-9353

If you call the TReK Help Desk and you get a recording please leave a message and

someone will return your call. E-mail is the preferred contact method for help. The e-

mail message is automatically forwarded to the TReK developers and helps cut the

response time. The HOSC Help Desk (256-544-5066) can provide assistance as needed

and is available 24x7.

3 Introduction

The TReK CFDP console application provides the capability to transfer files using the

Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol

(CFDP). The application uses the TReK CFDP library to provide CFDP functionality

through a menu of console application command line primitives.

The CCSDS File Delivery Protocol (CFDP) was developed by the Consultative

Committee for Space Data Systems (CCSDS). Official specifications are contained in a

CCSDS document called the CFDP Blue Book (available at www.ccsds.org). The CFDP

protocol provides reliable transfer of files from one computer (entity) to another, and has

http://www.ccsds.org/

TREK-USER-0004

 2

been designed to work well over space links. It can be used to perform space to ground,

ground to space, and ground to ground file transfers.

CFDP requires a sender and a receiver. The sender and receiver must be configured and

running at the same time to perform a file transfer. Each party is referred to as an

“Entity”. The sender is an entity and the receiver is an entity. Each “Entity” must have a

unique Entity ID. For example:

Figure 1 CFDP Sender and Receiver

To move a file from one computer to another, you will enter one or more CFDP

Commands (primitives) to indicate the action to be taken. The syntax of a primitive is as

follows:

[CFDP Directive] [Transmission] [source-path] [remote-EID] [destination-path]

The TReK CFDP console application provides support for CFDP over User Datagram

Protocol (UDP) and CFDP over Bundle Protocol (BP) using the Jet Propulsion Lab (JPL)

Interplanetary Overlay Network (ION) Disruption Tolerant Networking (DTN) software.

The CFDP over UDP configuration option is referred to as Native CFDP. The CFDP

over BP configuration option is referred to as ION CFDP. In the Native CFDP

configuration, the application uses UDP sockets and a Goddard Space Flight Center

(GSFC) CFDP library that performs the CFDP work. In the ION CDFP configuration,

the TReK CFDP console application communicates with the ION software which

performs the CFDP work.

There are differences in capabilities and syntax between the CFDP Native mode and the

ION CFDP mode. These differences are summarized below.

Native CFDP Configuration

The syntax of a primitive is as follows:

[CFDP Directive] [Transmission] [source-path] [remote-EID] [destination-path]

Native CFDP Example: put class2 “D:\file1.txt” 2 “/home/kirk/file1.txt”

The TReK CFDP application currently supports multiple CFDP Directives for both

Native and ION CFDP modes. These are defined in the Table 2 CFDP Directives.

Valid Transmission values are class1 or class2. Class1 does not guarantee reliable

delivery of the file to the destination. Class2 does ensure reliable delivery.

TREK-USER-0004

 3

The file you want to transfer is considered the “Source” and the location it should be

transferred to is considered the “Destination”.

When entering a Source or Destination in a CFDP command line, it must be encapsulated

in double quotes.

ION CFDP Configuration

The syntax of a primitive is as follows:

[CFDP Directive] [Transmission] [source-path] [remote-EID] [destination-path]

ION CFDP Example: put //// “D:\file1.txt” 2 “/home/kirk/file1.txt”

The TReK CFDP application currently supports multiple CFDP Directives for both

Native and ION CFDP modes. These are defined in the Table 2 CFDP Directives.

The Transmission entry for ION CFDP is composed of five properties. Once these

properties are configured, a “////” string is used to indicate that the pre-configured values

should be used. The “////” nomenclature is shorthand notation for the following

combination of values:

Lifespan/Bundle Protocol Class of Service/Expedited Priority Ordinal/Transmission Mode/Criticality

When the values are empty it indicates that pre-configured values should be used for

these properties.

A summary of the Transmission properties is provided in the following table. For details,

please reference section 5.1 Table 4.

Property Description

Lifespan The lifespan is the bundle's "time to live" (TTL) in

seconds. The bundle is destroyed if its TTL has

expired and it has not reached its destination.

Bundle Protocol Class of Service The Bundle Protocol Class of Service defines the

transmission priority of outbound bundles from three

ION priority queues corresponding to bulk, standard,

and expedited priorities. The expedited priority

queue must be empty before bundles in the standard

or bulk queues are serviced by ION. Therefore,

bundles with expedited priority should only be sent in

critical/emergency situations.

Expedited Priority Ordinal The expedited priority ordinal is only associated with

the expedited priority class of service.

Transmission Mode The transmission mode defines the reliability of

bundle delivery to a destination. The three

TREK-USER-0004

 4

transmission modes supported are best effort, assured,

and assured with custody transfer.

Criticality A critical bundle is one that has to reach its

destination as soon as is physically possible. For this

reason, bundles flagged as critical may not include

custody transfer and require an ION configuration

with contact graph routing. In some cases, a critical

bundle may be sent over multiple routes to ensure

delivery to its final destination. Critical bundles are

placed in the expedited priority queue and should

only be used in emergency situations.

Table 1 ION CFDP Transmission Parameters

CFDP Directives

The TReK CFDP console application currently supports multiple CFDP directives for

both Native and ION CFDP mode and includes put and get directives, filestore directives

and message directives. These directives are defined in the following table:

Directive Description

append_file append a file at the remote entity to another file at the remote

entity.

bit_rate changes the aggregate file transfer bit rate, in real time, for local or

remote entities hosting a TReK implementation of Native CFDP.

The “affected EID” may be the local entity ID or a remote entity

ID. The "bit_rate" primitive is delivered to a remote entity in the

form of a TReK CFDP message.

close_rec_file send a directive to a TReK Record library to close one or all open

record files. If the record file name is not included in the

primitive, all open record files associated with the TReK Record

library are closed. The TReK Record library automatically opens

a new record file after it closes a current record file. The “affected

EID” may be the local entity ID or a remote entity ID. The

"close_rec_file" directive is delivered to a remote entity in the

form of a TReK CFDP message.

create_dir create a directory at the remote entity.

create_file create an empty file at the remote entity.

delete_file delete a file at the remote entity.

deny_dir delete a directory at the remote entity. (Like remove_dir, but does

not fail if the directory does not exist. Directory must be empty.)

deny_file delete a file at the remote entity. (Like delete_file, but does not

fail if the file does not exist)

get copy file(s) from the remote entity to the local entity. (File cannot

be empty.)

message send a text string to the remote entity.

put copy file(s) from the local entity to the remote entity. (File cannot

TREK-USER-0004

 5

be empty.)

remove_dir delete a directory at the remote entity. (Directory must be empty.)

rename_file rename a file at the remote entity.

replace_file replace a file (contents) at the remote entity with another file

(contents) at the remote entity.

Table 2 CFDP Directives

Some directives only require a Source. The following table describes what is required for

Source and Destination for each directive. Name of file, filename, and name of directory

refer to an absolute path.

Directive Source (first file) Destination (second file)

append_file name of file whose contents

form first part of new file and

name of the new file

name of file whose contents will form

second part of new file

bit_rate aggregate file transfer bit rate

close_rec_file name of the TReK record

library device

name of the TReK record file to close

(if not included all record files

associated with the record device are

closed)

create_dir name of directory to be created

create_file filename to be created

delete_file filename to be deleted

deny_dir name of directory to be deleted

deny_file filename to be deleted

get file or directory name of file(s)

to retrieve

file or directory name for file(s)

retrieved

message message

put file or directory name of file(s)

to send

file or directory name for file(s) sent

remove_dir name of directory to be deleted

rename_file old filename new filename

replace_file filename whose contents are to

be replaced

filename whose contents will replace

the contents of the first filename

Table 3 CFDP Directive Format

When entering a Source or Destination in a CFDP command line, it must be encapsulated

in double quotes.

Note: The Get directive is not supported in all ISS CFDP Native and ION

implementations. Filestore and message directives are not supported in all ISS CFDP

Native implementations. They are supported by TReK when both the sender and receiver

are TReK CFDP implementations (TReK CFDP application, TReK CFDP console

application, or TReK CFDP Library). In addition, the bit rate and close rec file

directives are not part of the CFDP Blue Book. The bit rate directive is only supported

TREK-USER-0004

 6

by the TReK CFDP implementation of Native CFDP. The close rec file directive is only

supported the by the TReK CFDP implementation of Native and ION CFDP in

conjunction with the TReK Record library.

TReK CFDP may be configured to encrypt and decrypt all Native CFDP transactions

(e.g., "put", "get", "message", "create_file", "delete_file" ...). The Native CFDP

encryption and decryption capability is implemented by encrypting and decrypting the

CFDP Protocol Data Units (PDUs) that are exchanged between the CFDP source and

destination platforms. Review the “remote entity ID” discussion in the CFDP

configuration file description for further information on this Native CFDP

encrypt/decrypt configuration option. This option is not available for ION CFDP because

TReK CFDP does not have access to ION’s CFDP PDUs.

TReK provides the ability to create CFDP dropboxes to push files to a remote

destination. The dropboxes support both Native and ION CFDP modes. CFDP

dropboxes are created when the TReK application’s TReK CFDP library reads and

processes the TReK CFDP configuration file. A TReK CFDP configuration file CFDP

"dropbox" primitive defines a dropbox's operation parameters including where the

dropbox is located and the destination of each file placed in the dropbox. A dropbox file

is transferred to the dropbox destination immediately after the file is copied to the

dropbox assuming a communication path exists between both sides of the transaction.

Pre-existing dropbox files are immediately transferred after the creation of the dropbox.

TReK also provides the ability to create encryption and decryption dropboxes to encrypt

and decrypt local files. The encrypt and decrypt dropboxes support both Native and ION

CFDP modes. Encrypt and decrypt dropboxes are created when the TReK application’s

TReK CFDP library reads and processes the TReK CFDP configuration file. A TReK

CFDP configuration file encrypt/decrypt "dropbox" primitive defines a dropbox's

operation parameters including where the dropbox is located and the directory location of

the newly created encrypted or decrypted file. By chaining together encrypt and decrypt

dropboxes with a CFDP dropbox, a completely automated encrypt, CFDP file transfer,

decrypt chain may be created. This is the only method TReK provides to automate file

encryption/decryption using ION CFDP.

TReK includes a CFDP Graphical User Interface (GUI) application and a CFDP library.

If you need command line CFDP functionality onboard a spacecraft consider using the

TReK CFDP console application. Source code for the console application is provided in

the TReK example directory. If you need CFDP functionality without a command line

interface, the CFDP destination application may meet your requirements. The source

code for the CFDP destination application is also found in the TReK example directory.

If you need CFDP functionality on the ground consider using the TReK CFDP GUI

application. If you need to include CFDP functionality in your own application, consider

using the TReK CFDP library.

TREK-USER-0004

 7

TReK Encryption

The TReK encryption library uses OpenSSL's FIPS 140-2 validated cryptographic

module and public/private key pairs to encrypt and decrypt files and packets. TReK

encryption library support is provided on 32 bit and 64 bit Linux operating systems and

64 bit Windows operating systems. TReK encryption library support is not available on

32 bit Window operating systems. Both the flight platform and ground platform generate

public/private key pairs using TReK's "trek_crypt" application. TReK's public

key/private key encryption architecture is based on Elliptic Curve Cryptography (ECC)

using curve P-256 providing 128-bit security with 128 or 256 bit keys. The cipher

packages included with the TReK encryption library are the Advance Encryption

Standard (AES) Galois/Counter Mode(AES GCM) and the AES Counter with CBC-

MAC (AES CCM) ciphers offering confidentiality, authenticity and integrity. The

library supports 128 and 256 bit cipher key sizes and provides AES 128 and 256 bit key-

wrap/unwrap functions. Fresh Cipher Encryption Keys (CEK) are created for files and

packets using a Password-Based Key Derivation Function 2 (PBKDF2).

TReK's "trek_crypt" application generates the public and private key pair using ECC.

The private key is wrapped prior to storing in a file with a default passphrase or an

optional user passphrase up to 63 characters in length. If a user passphrase is used to

wrap the private key, the passphrase must be provided during runtime. Three methods

are available to provide the user passphrase at runtime: enter the passphrase using the

TReK CFDP GUI, include the passphrase as a seperate parameter after the path and

filename of the CFDP configuration file when launching the TReK CFDP console

application or provide the passphrase programmatically using the TReK API. The latter

method requires recompilation of the TReK CFDP console application or user

application. A shared secred key is generated using the private key and the

remote/destination platform's public key referred to as the peer public key. The peer

public key (i.e., the public key of the destination platform) must be exchanged manually

prior to encryption or decryption, no automated key exchange mechanisms is

implemented. The TReK encryption library generates a new CEK for every encrypted

file and may be configured to generate a new CEK for every encrypted packet in a packet

stream. The TReK encryption library may also be configured to generate a new CEK, for

a packet stream, once every "x" seconds to support encryption of high rate packet stream.

No "encryption handshaking" is required between flight and ground hardware during the

encryption and decryption of packets.

Files may be encrypted and decrypted using TReK encryption or decryption dropboxes.

Native CFDP may be configured to encrypt and decrypt the CFDP packet streams

associated with CFDP transactions. The native CFDP stream encryption configuration

automatically encrypts and decrypts files as they are being transferred between the source

platform and destination platform requiring no encryption or decryption dropbox. The

CFDP packet stream encryption option is not available for ION CFDP. ION CFDP must

use the encryption and decryption dropboxes to encrypt and decrypt files. Review the

description of the CFDP configuration file's remote entity IDs for further information on

packet stream encryption and native CFDP.

TREK-USER-0004

 8

4 Overview of the User Interface

4.1 Console Menu

The CFDP console application command primitives are described below.

➢ To put a file on another platform:

Native CFDP Configuration

put <class1,class2> <”source pathname”> <destination entity id> <”destination pathname”>

(e.g., put class2 “/home/user/fileA.txt” 2 “/home/user/fileB.txt”)

ION CFDP Configuration

put <life>/<cos>/<ord>/<mode>/<crit> <"src path"> <dest EID> <"dest path">
(e.g., put 86400/STD_PRIORITY/0/ASSURED/NOT_CRITICAL "D:/test a" 100 "D:/test

b")

Executes a single “put” transaction by transferring a copy of a file from the local

platform to the destination platform.

➢ To put a directory of files on another platform:

Native CFDP Configuration

put <class1,class2> <”source pathname”> <destination entity id> <”destination pathname”>

 (e.g., put class2 “/home/user/” 2 “D:/”)

ION CFDP Configuration

put <life>/<cos>/<ord>/<mode>/<crit> <"src path"> <dest EID> <"dest path">
 (e.g., put 86400/STD_PRIORITY/// "/home/user/" 100 "D:/")

 Executes a “put” transaction for all the files in the specified directory by transferring

 copies of the files from the local platform to the destination platform.

➢ To get a file from another platform:

Native CFDP Configuration

get <class1,class2> <”source pathname”> <source entity id> <”destination pathname”>

(e.g., get class2 “/home/user/fileB.txt” 2 “D:/fileA.txt”)

ION CFDP Configuration

get <life>/<cos>/<ord>/<mode>/<crit> <"src path"> <src EID> <"dest path">
(e.g., get ///ASSURED / "D:/test a" 100 "D:/test b")

Executes a single “get” transaction by transferring a copy of a file from the remote

platform to the local platform.

➢ To get a directory of files from another platform:

Native CFDP Configuration

TREK-USER-0004

 9

get <class1,class2> <”source pathname” > < source entity id> <”destination pathname “>

(e.g., get class2 “D:/” 2 “/home/user/”)

ION CFDP Configuration

get <life>/<cos>/<ord>/<mode>/<crit> <"src path"> <src EID> <"dest path">
(e.g., get //// "/home/user/" 100 "D:/")

 Executes a “get” transaction for all the files in the specified directory by transferring

 copies of the files from the remote platform to the local platform.

➢ To execute a filestore directive:

Native CFDP Configuration

<action> <class1,class2> <”1st path” > < dest EID >

(e.g., create_file class2 “D:/test a” 2)

Or

<action> <class1,class2> <”1st path” > < dest EID ><"2nd path">
 (e.g., rename_file class2 "D:/test a" 2 "D:/test b")

ION CFDP Configuration

<action> <life>/<cos>/<ord>/<mode>/<crit> <"1st path"> <dest EID>
(e.g., create_file //// "D:/test a" 100)

Or

<action> <life>/<cos>/<ord>/<mode>/<crit> <"1st path"> <dest EID> <"2nd path">
(e.g., rename_file / "D:/test a" 100 "D:/test b")

Executes a filestore directive on remote platform. For a complete listing of the

filestore directives see Section 3 Table 2.

➢ To send a message to a remote platform:

Native CFDP Configuration

message <class1,class2> <”message” > < dest EID >

(e.g., message class2 "Hello world" 2)

ION CFDP Configuration

message <life>/<cos>/<ord>/<mode>/<crit> <"message"> <dest EID>
(e.g., message / "Hello world" 100)

Sends a message to a remote platform.

TREK-USER-0004

 10

➢ To change the aggregate file transfer bit rate:

Native CFDP Configuration

bit_rate <class1,class2> <aggregate file transfer bit rate > < affected EID >

(e.g., bit_rate class2 5000000 2)

Changes the aggregate file transfer bit rate, in real time, for local or remote entities

hosting a TReK implementation of Native CFDP. The “affected EID” may be the

local entity ID or a remote entity ID. The "bit_rate" directive is delivered to a remote

entity in the form of a TReK CFDP message.

➢ To close a TReK record file:

Native CFDP Configuration

close_rec_file <class1,class2> <”rec lib dev name” > < affected EID >

(e.g., close_rec_file class2 “record_device1” 2)

Or

close_rec_file <class1,class2> <”rec lib dev name” > < affected EID > <”rec file name”>

(e.g., close_rec_file class2 “record_device1” 2 “ record_file1”)

ION CFDP Configuration

close_rec_file <life>/<cos>/<ord>/<mode>/<crit> <”rec lib dev name” > < EID >

(e.g., close_rec_file //// “record_device1” 2)

Or

close_rec_file <life>/<cos>/<ord>/<mode>/<crit> <”rec lib dev name” > < EID >

<”rec file name”>

(e.g., close_rec_file / “record_device1” 2 “ record_file1”)

Send a directive to a TReK Record library to close one or all open record files.

If the record file name is not included in the primitive, all open record files

associated with the TReK Record library are closed. The TReK Record library

automatically opens a new record file after it closes a current record file. The

“affected EID” may be the local entity ID or a remote entity ID. The

"close_rec_file" directive is delivered to a remote entity in the form of a TReK

CFDP message. The "close_rec_file" directive is not part of the CCSDS CFDP Blue

Book and will only succeed if both sides of the transaction are hosting the TReK

CFDP library.

➢ To add a put primitive to a list:

Native CFDP Configuration
add put <class1 or 2> <”source pathname”> <destination EID> <”destination pathname”>

(e.g., add put class2” /home/user/fileA.txt” 2 “D:/fileB.txt”)

TREK-USER-0004

 11

ION CFDP Configuration

add put <life>/<cos>/<ord>/<mode>/<crit> <"src path"> <dest EID> <"dest path">
(e.g., add put 86400/STD_PRIORITY/0/ASSURED/NOT_CRITICAL "D:/test a" 100

"D:/test b")

Adds a “put” primitive to a list of “put” primitives. The “put” primitives are not

executed until a “send” command is executed.

➢ To add a get primitive to a list:

Native CFDP Configuration
add get <class1 or 2> <”source pathname”> < source EID ><”destination pathname”>

(e.g., add get class2 “/home/user/fileA.txt” 2 “/home/user/fileB.txt”)

ION CFDP Configuration

add get <life>/<cos>/<ord>/<mode>/<crit> <"src path"> <src EID> <"dest path">
(e.g., add get //// "D:/test a" 100 "D:/test b")

Adds a “get” primitive to a list of “get” primitives. The “get” primitives are not

executed until a “send” command is executed.

➢ To add a filestore primitive to a list:

Native CFDP Configuration

add <action> <class1,class2> <”1st path” > < dest EID >

(e.g., add create_file class2 “D:/test a” 2)

ION CFDP Configuration

add <action> <life>/<cos>/<ord>/<mode>/<crit> <"1st path"> <dest EID>
(e.g., add create_file //// "D:/test a" 100)

Adds a “filestore” primitive to a list of “filestore” primitives. The “filestore”

primitives are not executed until a “send” command is executed.

➢ To add a message primitive to a list:

Native CFDP Configuration

add message <class1,class2> <”message” > < dest EID >

(e.g., add message class2 "Hello world" 2)

ION CFDP Configuration

add message <life>/<cos>/<ord>/<mode>/<crit> <"message"> <dest EID>
(e.g., add message / "Hello world" 100)

Adds a “message” primitive to a list of “message” primitives. The “message”

primitives are not executed until a “send” command is executed.

TREK-USER-0004

 12

➢ To add a bit rate primitive to a list:

Native CFDP Configuration

add bit_rate <class1,class2> <aggregate file transfer bit rate > < affected EID >

(e.g., add bit_rate class2 5000000 2)

Adds a “bit rate” primitive to a list of “message” primitives. The “message”

primitives are not executed until a “send” command is executed.

➢ To add a close rec file primitive to a list:

Native CFDP Configuration

add close_rec_file <class1,class2> <”rec lib dev name” > < affected EID >

(e.g., add close_rec_file class2 “record_device1” 2)

ION CFDP Configuration

add close_rec_file <life>/<cos>/<ord>/<mode>/<crit> <”rec lib dev name” > < EID >

(e.g., add close_rec_file //// “record_device1” 2)

Adds a “close rec file” primitive to a list of “filestore” primitives. The “filestore”

primitives are not executed until a “send” command is executed

➢ To read a file of primitives and add to a list:

process <”primitive pathname”>

(e.g., process “D:/toolkit_cfdp_primitives.txt”)

Reads a file of primitives and adds them to the appropriate CFDP primitive lists. All

valid primitive files must begin with the text string "primitive version X

NATIVE_CFDP" or "primitive_version X ION_CFDP" on a single line (the "X" in

the text is a version number that may be incremented in future releases). Files that do

not contain the primitive version text string are considered invalid and will not be

read. You may not mix Native CFDP primitives and ION CFDP primitives in the

same primitive file.

➢ To remove all primitives from a list:

remove

Removes all the primitives from the primitive lists.

TREK-USER-0004

 13

➢ To send/execute all primitives in a list:

send

Executes all the primitives from the primitive lists.

➢ To record all primitives in a list:

record prim <”pathname”>
(e.g., record prim “D:/cfdp_prim.txt”)

Records the primitives from the primitive lists to a file.

➢ To suspend all CFDP transactions:

windows os: ctrl-break or ctrl-fn-pause or ctrl-fn-right shift

linux os: ctrl-c

Suspends all the CFDP transactions.

➢ To resume all CFDP transactions:

resume

Resumes all the CFDP transactions.

➢ To cancel a CFDP transaction:

cancel <transaction id>

(e.g., cancel 1_1)

Cancels a CFDP transaction by specifying the transaction ID assigned to the

transaction.

➢ To cancel all CFDP transactions:

cancel all

Cancels all the CFDP transactions.

➢ To report on a CFDP transaction:

report <transaction id>

(e.g., report 1_1)

Displays a status report on CFDP transaction by specifying the ID assigned to the

transaction.

TREK-USER-0004

 14

➢ To report on all CFDP transactions:

report all

or

 r

Displays a status report on all the CFDP transactions.

➢ To display progress messages:

prog

Display progress messages on all the CFDP transactions.

➢ To stop displaying progress messages:

stop prog

To stop displaying progress messages on all the CFDP transactions.

➢ To log messages:

log <”pathname”> <log debug messages (true or false)>
(e.g., log “D:/log.txt” false)

Logs CFDP transaction messages to a file. Debug messages may also be included in

the log file for more detailed information about the transaction.

➢ To stop logging messages:

stop log

Stops logging CFDP transaction messages to file, closes the file and appends a GMT

time stamp to the name of the file.

➢ To record statistics snapshot:

stat <”pathname”>
(e.g., stat “D:/statistics.csv”)

Records a snapshot of device statistics once a second and includes current statistics

information on all packets that are being received or sent by the device.

➢ To stop recording statistics snapshot:

stop stat

TREK-USER-0004

 15

Stops recording a snapshot of device statistics to a file, closes the file and appends to

a GMT time stamp the name of the file.

➢ To reset statistics:

reset stat

Resets the device statistics information for all devices to zero.

➢ To record CFDP metrics snapshot:

metric <”pathname”>
(e.g., metric “D:/metrics.csv”)

Records a snapshot of CFDP transaction metrics once a second and includes the

completion status and transaction time of each CFDP transaction.

➢ To stop recording CFDP metrics snapshot:

stop metric

Stops recording a snapshot of CFDP transaction metrics to a file, closes the file and

appends a GMT time stamp to the name of the file.

➢ To reset CFDP metrics:

reset metric

Resets all CFDP metrics information to zero.

➢ To reconfigure the CFDP console application:

reconfig <”pathname”>

(e.g., reconfig “D:/cfdp_config.txt”)

Reconfigures the CFDP console application by cancelling all the current CFDP

transactions and configuring the application with the new configuration file.

➢ To save the CFDP console configuration:

save <”pathname”>

(e.g., save “D:/cfdp_config.txt”)

Saves the CFDP console configuration parameters to a file. This includes all “put”

and “get” primitives in the "put" and "get" lists.

TREK-USER-0004

 16

➢ To display the CFDP console configuration:

display config

Displays the list of CFDP console configuration parameters.

➢ To display the CFDP console command primitives:

help

Displays the list of CFDP console command primitives.

➢ To exit application:

exit or quit or q

Exits the CFDP console application.

5 Quick Start Guides

This section provides “How Tos” for common functions.

5.1 How to Configure the Application

When launching the CFDP console application, include the path and filename of a TReK

CFDP configuration file. If no path and filename are provided in the command line, the

application attempts to open a configuration file with the default path and filename equal

to “./toolkit_cfdp_config.txt”. If the CFDP console application is configured to perform

encryption/decryption and the private key was wrapped/encrypted with a user passphrase,

the user passphrase may be included in the command line after the configuration file path

name by encapsulating the passphrase in double quotes. For example:

➢ trek_cfdp_console.exe “D:/tookit_cfpd_config.txt” “passphrase”

If the CFDP console application default path and filename of the configuration file is not

appropriate and the console application is not configured to perform

encryption/decryption, simple include the configuration file path and filename, in double

quotes, after the console application executable. For example:

➢ trek_cfdp_console.exe “D:/my_cfpd_config.txt”

The format of a configuration file is a series of name value pairs that configure the CFDP

console application to meet user requirements. One or more spaces separate individual

parameters on each line in the file. Table 4 identifies and describes the individual

configuration file parameters. The third column identifies the device mode that each

parameter supports (the CFDP console application does not simultaneously support both

Native CFDP and ION CFDP).

TREK-USER-0004

 17

CFDP Configuration File Parameter Description Device Mode

CFDP_configuration_version

The configuration file version number. The

first parameter in the configuration file must

be the version number or TReK CFDP

initialization will fail.

NATIVE_CFDP

ION_CFDP

cfdp_library_device_mode

A unique reference that may be used to

communicate with other TReK library

devices.

NATIVE_CFDP

ION_CFDP

trek_device_mode

The TReK device mode parameter is set to

NATIVE_CFDP if the TReK CFDP library is

communicating with GSFC's CFDP library or

to ION_CFDP if TReK is communicating

with JPL's CFDP library.

NATIVE_CFDP

ION_CFDP

log_messages_in_file

The log messages in file boolean controls

message logging. If true, messages are

recorded in a log file. The default value is

false.

NATIVE_CFDP

ION_CFDP

log_debug_messages

The log debug messages boolean controls

logging debug messages. If true, debug

messages are recorded in a log file. The

default value is false.

NATIVE_CFDP

ION_CFDP

log_file_path

The log file path is the absolute path to the

directory where the log file should be written.

If an empty string is provided, the default path

is the user’s home directory.

NATIVE_CFDP

ION_CFDP

log_file_name

The log file name is the name to use for the

log file. The default value

"toolkit_cfdp_log.txt".

NATIVE_CFDP

ION_CFDP

record_stat_snapshot_in_file

The record stat snapshot in file boolean

controls recording statistics. If "true", a

statistic snapshot is recorded in a file. The

default value is false.

NATIVE_CFDP

ION_CFDP

record_packet_statistics

The record packet statistics boolean controls

recording packet statistics in addition to

device statistics. If "true", packet statistics are

recorded in a file. The default value is false.

NATIVE_CFDP

ION_CFDP

record_stat_file_path

The record stat file path is the absolute path to

the directory where the statistics file should be

recorded. If an empty string is provided, the

default path is the user’s home directory.

NATIVE_CFDP

ION_CFDP

record_stat_file_name

The record stat file name is the name to use

for the statistics file. The default value is

"toolkit_cfdp_statistics.csv".

NATIVE_CFDP

ION_CFDP

record_cfdp_metrics_snapshot_in_file
The record CFDP metrics snapshot in file

boolean controls recording CFDP metrics. If

NATIVE_CFDP

ION_CFDP

TREK-USER-0004

 18

"true", a CFDP metric snapshot is recorded in

a file. The default value is false.

record_cfdp_metrics_file_path

The record CFDP metrics file path is the

absolute path to the directory where the CFDP

metrics file should be recorded. If an empty

string is provided, the default path is the user’s

home directory.

NATIVE_CFDP

ION_CFDP

record_cfdp_metrics_file_name

The record CFDP metrics file name is the

name to use for the CFDP metrics file. The

default value is "toolkit_cfdp_metrics.csv".

NATIVE_CFDP

ION_CFDP

support_cfdp_status_requests

The support cfdp status requests boolean

enables monitoring the status of CFDP

transactions by a user application. If "true",

CFDP transaction monitoring is enabled. The

default value is false.

NATIVE_CFDP

ION_CFDP

public_key_path_and_file_name

The public key path and filename is the

absolute path and file name of the local

entity's public key file. It is used to encrypt

and decrypt files and CFDP PDU packets.

The public key file is created by TReK's

"trek_crypt" program.

NATIVE_CFDP

ION_CFDP

private_key_path_and_file_name

The private key path and filename is the

absolute path and file name of the local

entity's private key file. It is used to encrypt

and decrypt files and CFDP PDUs packets.

The private key file is created by TReK's

"trek_crypt" program.

NATIVE_CFDP

ION_CFDP

packet_encryption_key_time_interval

The packet encryption key time interval

determines how often the packet encryption

key is changed while encrypting a stream of

native CFDP PDU packets. The time interval

is measured in seconds. If the packet

encryption key time interval is set to zero, the

TReK encryption library will generate a new

packet encryption key for every packet in the

stream. The TReK encryption library can

support the encryption of high rate packet

streams by setting the packet encryption key

time interval to a non-zero value. The default

value is 10 seconds.

NATIVE_CFDP

cipher_class

The cipher class is the cipher package that the

TReK encryption library will use to encrypt

and decrypt files and streams of native CFDP

PDU packets. The four cipher class values are

AES_128_GCM, AES_256_GCM,

AES_128_CCM and AES_256_CCM which

NATIVE_CFDP

ION_CFDP

TREK-USER-0004

 19

support either a 128 bit or 256 bit symmetric

key. An AES 256 cipher will require more

CPU resources to encrypt and decrypt files

and streams then an AES 128 cipher.

Primitives

Creates and configures TReK dropboxes using

"dropbox" primitives and/or initializes the list

of CFDP primitives using TReK CFDP

primitives (e.g., "put", "get", "message",

"create_file", "delete_file" ...). An additional

CFDP library function (SendAllRequests)

must be called prior to processing the list of

CFDP primitives. The default primitive list is

empty.

NATIVE_CFDP

ION_CFDP

ack_timeout

The CFDP library sends positive

acknowledgment on reception of the end-of-

file packet and finished packet. This timeout

defines the number of seconds the CFDP

library will wait for the ACK packet to arrive

prior to retransmitting the end-of-file or

finished packet. Minimum value is 1,

maximum value is 2,147,483,647 and the

default value is 25 seconds.

NATIVE_CFDP

ack_limit

The ACK limit is the number of ack timeouts

that may occur prior to cancelling the CFDP

transaction. Minimum value is 1, maximum

value is 2,147,483,647 and the default value is

25.

NATIVE_CFDP

nak_timeout

The CFDP library sends a NAK packet

identifying the CFDP packets that were not

received by the CFDP library. This timeout

defines the number of seconds the CFDP

library will wait for the retransmission of the

requested CFDP packets. Minimum value is 1,

maximum value is 2,147,483,647 and the

default value is 75 seconds.

NATIVE_CFDP

nak_limit

The NAK limit is the number of Nak timeouts

that may occur prior to cancelling the CFDP

transaction. Minimum value is 1,

maximum value is 2147483647 and the

default value is 75.

NATIVE_CFDP

inactivity_timeout

The inactivity timeout is the length of time, in

seconds, the CFDP library is required to wait

between CFDP packet receptions prior to

cancelling the CFDP transaction. Minimum

value is 1, maximum value is 2,147,483,647

and the default value is 300 seconds.

NATIVE_CFDP

TREK-USER-0004

 20

outgoing_file_chunk_size

The outgoing file chunk size is the maximum

size, in bytes, of the data zone of the CFDP

packets created by the CFDP library.

Minimum value is 1, maximum value is

65,200 and the default value is 1,300 bytes.

NATIVE_CFDP

aggregate_file_transfer_bit_rate

The aggregate file transfer rate represents the

maximum transmission rate, in bits per

second, of the CFDP packets created by the

CFDP library. Minimum value is 1, maximum

value is 2,147,483,647 and the default value is

10,000,000 bits/second.

NATIVE_CFDP

socket_queue_size

The UDP socket that is created to receive

CFDP packets may store CFDP packets in a

queue prior to the packets being processed by

the CFDP library. This queue minimizes the

chances of a CFDP packet being dropped due

to packet transmission bursts or a temporary

CPU spike on the receiving platform. In

general, a larger queue size is needed for

higher transmission rates. If an unacceptable

number of CFDP packet retransmissions is

occurring, increasing the queue size or

decreasing the file transfer rate may help

decrease or eliminate the CFDP packet

retransmissions. Minimum value is 0,

maximum value is 1,000,000 and the default

value is 1000.

NATIVE_CFDP

transaction_cycle_time_interval

The transaction cycle time interval, in

milliseconds, controls the processing rate of

CFDP library transactions. Minimizing the

cycle time, increases the transaction speed or

processing rate. The default value is 1

milliseconds. The minimum value is 0

millisecond and the maximum value is

2,147,483,647 milliseconds. This value

should only be incremented if CPU usage on

the host platform is unexpectedly high while

idling or while processing a transaction.

NATIVE_CFDP

steps_per_transaction_cycle

The step per transaction cycle defines how

many steps or transaction cycles are

performed prior to delaying the prescribed

transaction cycle time. Increasing the steps

per transaction cycle, increases the transaction

speed or processing rate. The default value is

10. The minimum value is 1 and the

maximum value is 2,147,483,647. This value

NATIVE_CFDP

TREK-USER-0004

 21

should be incremented if the CFDP library is

not able to achieve the aggregate file transfer

rate. This value should be decremented if

CPU usage on the host platform is

unexpectedly high while idling or while

processing a transaction.

class_of_service

The class of service defines the CFDP level of

service for the file transfer. The two CFDP

levels of service are class1 and class2. CFDP

class1 service is a "send and forget" level of

service that sends files without any

acknowledgement of their receipt by the

recipient. CFDP class2 service requires file

delivery acknowledgements in the form of

ACKs and NAKs from the recipient. The

default value is class2.

NATIVE_CFDP

auto_suspend_and_resume

The auto suspend and resume boolean enables

the automatic suspension or resumption of all

CFDP transactions associated with a remote

entity ID when a network connection to that

remote entity ID has been lost or found. The

TReK CFDP library creates a UPD socket that

sends and receives four byte packets to

confirm network connectivity. This capability

may be used to detect Acquisition Of Signal

(AOS) and Loss Of Signal (LOS) events

enabling native CFDP to successfully transfer

files across multiple AOS/LOS windows

without manual intervention. Auto suspend

and resume is only supported by the TReK

CFDP library. Therefore, the TReK CFDP

library software must be running on both the

local and remote nodes. The default value is

false.

NATIVE_CFDP

auto_suspend_and_resume_mode

The auto suspend and resume mode identifies

the auto suspend and resume relationship

between the local node and the remote nodes.

The three auto suspend and resume mode

parameter values are

PEER_TO_PEER_MODE,

CLIENT_OR_GROUND_MODE and

SERVER_OR_FLIGHT_MODE. A peer to

peer configuration allows all peer to peer

nodes to perform CFDP transactions with each

other. A client server configuration restricts

CFDP transactions. A client may only

NATIVE_CFDP

TREK-USER-0004

 22

perform CFDP transactions with a server and

a server may only perform CFDP transactions

with a client. A client may perform CFDP

transactions with multiple server nodes and a

server may perform CFDP transactions with

multiple client nodes. The four byte

connectivity packet is always being

transmitted by all nodes in a peer to peer

configuration regardless of network

connectivity or AOS/LOS periods. In a

client/ground and server/flight configuration

the connectivity packet is always being

transmitted by the client/ground node but the

server/flight node only transmits the

connectivity packet over a confirmed network

connection during AOS periods. The default

value is PEER_TO_PEER_MODE.

auto_suspend_and_resume_port

The auto suspend and resume port is used to

create the UDP socket that sends and receives

the four byte connectivity packet. The default

port value is 45600 (minimum value 0 and

maximum value 65535).

NATIVE_CFDP

auto_suspend_and_resume_connection_timeout

The auto suspend and resume connection

timeout value is the length of time, in seconds,

that must pass between the receipt of

connectivity packets before a connection

between two entity IDs or nodes is declared

lost. Connectivity packets are sent once every

half second. Minimum value is 1, maximum

value is 2,147,483,647 and the default value is

5.

NATIVE_CFDP

local_entity_id local_ip_address local_port

The pre-assigned local entity ID integer value

and its associated local IP address and local

port. Only one local EID entry is supported by

the CFDP library. The default

local_ip_address value is 127.0.0.1. The

default local_port value is 4560 (minimum

value 0 and maximum value 65535).

NATIVE_CFDP

remote_entity_id remote_ip_address

remote_port

The pre-assigned remote entity ID integer

value and its associated remote IP address and

remote port. Multiple remote entity ID entries

are supported by the CFDP library.

NATIVE_CFDP

remote_entity_id remote_ip_address

remote_port

peer_pub_key_path_and_file_name

The pre-assigned remote entity ID integer

value and its associated remote IP address,

remote port and the absolute path and name of

the file containing the peer public key to

NATIVE_CFDP

TREK-USER-0004

 23

encrypt and decrypt the native CFDP PDU

packets. The peer public key is the public key

of the remote/destination platform and is

created by TReK's "trek_crypt" program. A

peer public key path and file name must be

provided to enable encryption and decryption

of all CFDP transactions with the remote

entity. Multiple remote entity ID entries are

supported by the CFDP library.

lifespan

The lifespan is the bundle's "time to live"

(TTL) in seconds. The bundle is destroyed if

its TTL has expired and it has not reached its

destination. Minimum value is 1, maximum

value is 2,147,483,647 and the default value is

86400.

ION_CFDP

bp_class_of_service

The BP class of service defines the

transmission priority of outbound bundles

from three ION priority queues corresponding

to bulk, standard and expedited priorities. The

three BP class of service parameter values are

BULK_PRIORITY, STD_PRIORITY and

EXPEDITED_PRIORITY. The expedited

priority queue must be empty before bundles

in the standard or bulk queues are serviced by

ION. Therefore, bundles with

EXPEDITED_PRIORITY should only be sent

in critical/emergency situations. The default

value is STD_PRIORITY.

ION_CFDP

expedited_priority_ordinal

The expedited priority ordinal is only

associated with the EXPEDITED_PRIORITY

class of service. Ordinal values range from 0

(lowest priority) to 254 (highest priority). The

default value is 0.

ION_CFDP

transmission_mode

The transmission mode defines the reliability

of bundle delivery to a destination. The three

transmission mode parameter values are

BEST_EFFORT, ASSURED and

ASSURED_WITH_CUSTODY_TRANSFER.

BEST_EFFORT relies upon the underlying

convergence-layer protocol (e.g.,

Transmission Control Protocol or TCP) to

retransmit missing bundles. ASSURED is a

step up in reliability and includes BP support

in detecting a lost TCP connection and re-

forwarding of bundles assumed aborted by the

convergence-layer protocol failure.

ION_CFDP

TREK-USER-0004

 24

ASSURED_WITH_CUSTODY_TRANSFER

requires the reception, by the sending node, of

a custody acceptance or refusal signal

(packaged in a bundle) from the receiving

node. The default value is ASSURED.

criticality

A critical bundle is one that has to reach its

destination as soon as is physically possible.

For this reason, bundles flagged as critical

may not include custody transfer and require

an ION configuration with contact graph

routing. In some cases, a critical bundle may

be sent over multiple routes to ensure delivery

to its final destination. Critical bundles are

placed in the expedited priority queue and

should only be used in emergency situations.

The two criticality parameters are

NOT_CRITICAL and CRITICAL. The

default value is NOT_CRITICAL.

ION_CFDP

support_transaction_result_message

The support transaction result boolean enables

the generation and transmission of a CFDP

transaction result message to the source node.

If the source node receives the transaction

result message within a designated time

window, it will update its transaction status

with the transaction result (e.g., success or

fail). If the support transaction result boolean

is set to "true" and the result message is not

received within a designated time window, the

source node's transaction status is set to

"unknown". If this boolean is set to "false"

and the source node did not experience any

problems while transmitting the CFDP

transaction request, the final transaction status

is set to "finished". This capability is only

supported by the TReK CFDP library.

Therefore, the TReK CFDP library software

must be running on both the source and

destination nodes. The default value is true.

ION_CFDP

transaction_result_message_timeout

The transaction result message timeout is the

length of time, in seconds, the TReK CFDP

library will wait for a transaction result

message prior to setting the final status of the

transaction to "unknown". Choosing the

proper transaction result message timeout is

problematic. ION CFDP processes CFDP

transactions sequentially so careful

ION_CFDP

TREK-USER-0004

 25

considerations must be made when setting this

value. If a large number of files are being

uplinked and downlinked simultaneously, a

larger timeout value may be necessary. In

addition, the timeout value should include

LOS windows if the file transfer will span

LOS periods (the result message timer is not

paused during an LOS). Too small a value

will unnecessarily set the final status of a

transaction to "unknown", too large a value

will introduce an unnecessary wait prior to

setting the final status of the transaction to

"unknown" if a final status message is never

received. It is best to choose too large a value

versus too small a value. Minimum value is 1,

maximum value is 2,147,483,647 and the

default value is 300.

add_tmp_cfdp_filename_extension

The "tmp_cfdp" file name extension boolean

should be set to "true" if ION is transferring

one or more files to a TReK dropbox

directory. The most common scenario is if an

encryption dropbox has been created and

configured to place an encrypted file in an

ION CFDP dropbox. If the ION CFDP

dropbox is configured to transfer the

encrypted file to a decryption dropbox on the

destination platform, the "tmp_cfdp" file name

extension boolean must be "true" on the

source or sending platform to properly decrypt

the file on the destination platform. If this

boolean is set to "true", a temporay file name

is created for all file transfers by adding a

".tmp_cfdp" file name extension to the

original file name on the destination platform.

Upon successful completion of the file

transfer, the ".tmp_cfdp" extension is removed

from the file name on the destination platform.

If the destination is a dropbox, the dropbox

will use the file name to determine both when

the file has completed its transfer and when

the file may safely be decrypted by the

dropbox. If this boolean is set to "false", no

temporary file name is used during the file

transfer and ION "put" transfers to a TReK

dropbox directory are not supported. Native

CFDP uses a temporary "tmp_cfdp" file name

ION_CFDP

TREK-USER-0004

 26

for all file transfers and does not require this

boolean flag when transferring files to a

dropbox directory. Setting the "tmp_cfdp" file

name extension boolean to "true" even if a file

transfer destination is not a TReK dropbox

directory is supported and does not impact

performance. However, the destination

platform must be hosting TReK version 5.2.0

or higher to properly remove the ".tmp_cfdp"

file name extension. The default value is

false.

display_console_menu

The display console menu boolean controls

displaying the console command primitive

menu during startup of the console

application. The default value is true.

NATIVE_CFDP

ION_CFDP

display_error_messages

The display error messages boolean controls

displaying error messages by the CFDP GUI

and console applications. If "true", error

messages are displayed by the CFDP GUI or

console applications. The default value is true.

NATIVE_CFDP

ION_CFDP

display_warning_messages

The display warning messages boolean

controls displaying warning messages by the

CFDP GUI and console applications. If "true",

warning messages are displayed by the CFDP

GUI and console applications. The default

value is false.

NATIVE_CFDP

ION_CFDP

display_info_messages

The display info messages boolean controls

displaying information messages by the CFDP

GUI and console applications. If "true",

information messages are displayed by the

CFDP GUI and console applications. The

default value is true.

NATIVE_CFDP

ION_CFDP

display_progress_messages

The display progress messages boolean

controls displaying progress messages by the

CFDP GUI and console applications. If "true",

progress messages are displayed by the CFDP

GUI and console applications. The default

value is false.

NATIVE_CFDP

ION_CFDP

display_debug_messages

The display debug messages boolean controls

displaying debug messages by the CFDP GUI

and console applications. If "true", debug

messages are displayed by the CFDP GUI

applications. The default value is false.

NATIVE_CFDP

ION_CFDP

default_remote_entity_id

The default remote entity ID is used by the

CFDP GUI application to save a default value

for the remote EID. The default value is blank.

NATIVE_CFDP

ION_CFDP

TREK-USER-0004

 27

default_destination_command_line

The default destination command line is used

by the CFDP GUI application to save a

selected default command line destination

path from the list of default destination paths.

The default value is blank.

NATIVE_CFDP

ION_CFDP

default_destination_command_list

The default destination command list is used

by the CFDP GUI application to save a

selected default command list destination path

from the list of default destination paths. The

default value is blank.

NATIVE_CFDP

ION_CFDP

default_destination_path

The default destination path is used by the

CFDP GUI application to save the list of

default destination paths. The default value is

blank.

NATIVE_CFDP

ION_CFDP

gui_command_line_primitive

Used by the CFDP GUI application to save

the command line primitive. The default value

is blank.

NATIVE_CFDP

ION_CFDP

Table 4 TReK CFDP Configuration File Parameters

5.2 How to Create a CFDP Dropbox

This section describes how to create a CFDP dropbox. The CFDP console application

may be configured to create a CFDP dropbox by including a “dropbox” primitive in the

TReK CFDP configuration file. One or more “dropbox” primitives may be added to the

“Dropbox CFDP Primitives” section of the configuration file. The “dropbox” primitive is

not supported by the CFDP console application’s command line interface.

Acceptable formats of the CFDP "dropbox" primitive string for Native CFDP are as

follows:

➢ dropbox <class1/class2> <"dropbox path"> <dest EID> <"dest path"> <retry limit>

<"successful transaction path">

(e.g., dropbox class2 "D:/db_dest1/" 200 "D:/dest1/" 1 "D:/success/")

➢ dropbox <class1/class2> <”dropbox path"> <dest EID> <"dest path"> <retry limit>

<"">

(e.g., dropbox class2 "/home/user/dropbox_dest1" 200 "/home/user/dest1" 1 "")

The dropbox primitive for Native CFDP includes class 1 or class 2 service, the dropbox

path, the destination entity ID, the destination path, the retry limit and the successful

transaction path. The retry limit defines the number of additional attempts at transferring

a file before declaring the transaction unsuccessful. The successful transaction path is the

path to a directory, on the dropbox source platform, where successfully transferred files

are stored upon completion of a transaction. If the successful transaction path is empty,

as shown in the second example, the dropbox will delete the file, on the source platform,

TREK-USER-0004

 28

if the file is successfully transferred to its destination. For class 1 service, files are

simply moved or deleted from the dropbox directory when the transaction has completed

the number of retry attempts.

Acceptable formats of the CFDP "dropbox" primitive string for ION CFDP are as

follows:

➢ dropbox <life>/<cos>/<ord>/<mode>/<crit> <"dropbox path"> <dest EID> <"dest

path"> <retry limit> <" successful transaction path ">

(e.g., dropbox 86400/STD_PRIORITY/0/ASSURED/NOT_CRITICAL

"/home/user/dropbox_dest1/" 200 "/home/user/dest1/" 0 "/home/user/success/")

➢ dropbox //// <"dropbox path"> <dest ID> <"dest path"> <retry limit> <"">

(e.g., dropbox ///ASSURED/ "/home/user/db_dest1/" 200 "/home/user/dest1/" 0 "")

➢ dropbox / <"dropbox path"> <dest EID> <"dest path"> <retry limit> <"">

(e.g., dropbox / "/home/user/dropbox_dest1" 100 "D:/dropbox_dest1" 0 "")

The CFDP dropbox primitive for ION CFDP is identical to Native CFDP except "class1"

or "class2" is replaced by the ION CFDP parameter values in the TReK CFDP

configuration file (TTL, priority, mode and criticality) if the values were not specified in

the primitive string. Another important distinction between ION and Native CFDP

dropboxes is associated with the retry limit. An ION CFDP dropbox ignores the retry

limit value in the dropbox primitive and resets the value to zero in the TReK CFDP

library. There are two important reasons why the ION CFDP dropbox does not attempt

to retransmit failed CFDP transactions:

1. ION CFDP uses the original filename when populating the destination file. Any

attempt to retransmit a file must also include a "delete" filestore directive to ensure

no file with the original filename exists at the destination.

2. If transaction result messages are being processed and an incorrect

"transaction_result_message_timeout" is chosen, a successfully transferred file will

be incorrectly deleted.

If transaction result messages are not being processed by the TReK ION CFDP library

(i.e., class 1 service), files are simply moved or deleted from the dropbox directory when

the transaction has completed the transfer from the dropbox.

Dropbox files are renamed with a ".dropbox" extension while they are being processed by

the dropbox. If a dropbox fails to successfully transfer a file to the destination directory,

a class 2 Native CFDP dropbox will initiate additional transfer attempts up to the "retry

limit" designated in the dropbox primitive. A class 1 Native CFDP dropbox will blindly

repeat the file transfer up to the "retry limit". If the final status message of a file

transaction identifies an unsuccessful file transfer, the file is renamed with an

".unsuccessful" extension. If the CFDP library fails to receive the final status of a file

transaction, the file is renamed with an ".unknown" extension. If an error occurred

TREK-USER-0004

 29

during the file transfer, the file is renamed with a ".droperror" extension. Only

successfully transferred files are moved or deleted from the dropbox directory.

5.3 How to Create an Encrypt or Decrypt Dropbox

This section describes how to create an encrypt or decrypt dropbox. The CFDP console

application may be configured to create an encrypt or decrypt dropbox by including a

dropbox primitive in the TReK CFDP configuration file. One or more dropbox

primitives may be added to the “Dropbox Encrypt or Decrypt Primitives” section of the

configuration file. The dropbox primitive is not supported by the CFDP console

application’s command line interface. A TReK CFDP configuration file dropbox

primitive defines an encrypt or decrypt dropbox's operation parameters including where

the dropbox is located and the local destination directory of each newly created encrypted

or decrypted file. Encrypt and decrypt dropboxes are created during initialization of the

TReK CFDP library when InitToolkitCfdp function reads the TReK CFDP configuration

file. An encrypt or decrypt dropbox file is encrypted or decrypted prior to being

transferred to a local destination directory on the dropbox platform. Pre-existing dropbox

files are immediately encrypted or decrypted after the creation of the dropbox. If the

local destination directory of an encrypt dropbox is a CFDP dropbox, the encrypted file

will automatically be transferred to the CFDP dropbox's remote destination directory. If

the CFDP dropbox's remote destination directory is a decrypt dropbox the encrypted file

will automatically be decrypted and placed in the decrypt dropbox's destination directory.

By chaining together encrypt and decrypt dropboxes with a CFDP dropbox, a completely

automated encrypt, CFDP file transfer, decrypt chain may be created and set in motion by

placing a file in the local encrypt dropbox. The encrypt, decrypt, CFDP dropbox chain is

currently the only method TReK provides to automate file encryption/decryption using

ION CFDP. Unlike ION CFDP, native CFDP provides access to the CFDP PDUs,

making it possible to configure the TReK native CFDP application to encrypt and decrypt

all CFDP transactions (e.g., "put", "get", "message", "create_file", "delete_file" ...) and

avoid creating encrypt and decrypt dropboxes. Simply add a peer public key path and_file

name to the end of the remote entity line in the native section of the CFDP configuration

file. Review the description of the CFDP configuration file's remote entity IDs for further

information on this native CFDP encrypt/decrypt configuration option.

Acceptable formats of the encrypt or decrypt dropbox primitive string are as follows:

➢ dropbox <encrypt/decrypt> <"dropbox path"> <" peer public key path and

filename"> <"destination path"> <crypt block size> <"successful transaction path">

 (e.g., dropbox encrypt "D:/dropbox_dest1/" "D:/ peer_public.key" "D:/dest1/"

1000000 "D:/success/")

TREK-USER-0004

 30

➢ dropbox <encrypt/decrypt> <"dropbox path"> <" peer public key path and

filename"> <"destination path"> <crypt block size> <"">

 (e.g., dropbox decrypt "/home/user/dropbox_dest1" "/home/user/ peer_public.key"

"/home/user/dest1" 1000000 "")

The encrypt/decrypt dropbox primitive includes the encrypt or decrypt service, the

dropbox path, the peer public key path and filename, the destination path, the crypt block

size and the successful transaction path. The encrypt or decrypt service identifies

whether the dropbox is encrypting or decrypting files. The dropbox path defines the

location of the encrypt or decrypt dropbox while the peer public key path and filename

define the location and name of the peer public key file. The peer public key is the public

key of the destination platform. The encrypt/decrypt dropbox primitive includes a

destination path to the local directory where the new encrypted or decrypted file is

created and stored. The crypt block size is an unsigned 32 bit value identifying the

number of bytes that are read and encrypted or decrypted with every file read. A large

crypt block size improves encryption and decryption performance but may also tax a

CPU. If the successful transaction path is defined, as shown in the first example, the

dropbox will move the original file placed in the dropbox to the successful transaction

directory if and only if a new encrypted or decrypted file is successfully created and

stored in the dropbox's destination directory. If the successful transaction path is empty,

as shown in the second example, the dropbox will delete the original file placed in the

dropbox if and only if a new encrypted/decrypted file is successfully created and stored in

the dropbox's destination directory. If the encrypt or decrypt dropbox fails to encrypt or

decrypt a file, the file will be renamed with a time tagged ".droperror" extension and

remain in the dropbox. The encrypt or decrypt dropbox will not attempt to encrypt or

decrypt a file with a ".droperror" extension in its filename. The TReK encryption

architecture uses OpenSSL's FIPS 140-2 validated cryptographic module.

5.4 How to Create a Frag or Defrag Dropbox

This section describes how to create a fragmentation or defragmentation dropbox. The

CFDP console application provides the ability to transfer very large, multi-Gigabyte, files

by splitting the files apart using a fragmentation dropbox, transferring the file fragments,

using a CFDP dropbox, to a defragmentation dropbox where the file fragments are put

back together producing the original very large, multi-Gigabyte, file. A TReK CFDP

configuration file frag or defrag dropbox primitive defines a frag or defrag dropbox's

operation parameters including where the dropbox is located, the size of the file

fragments and the frag or defrags destination directory and successful transaction

directory. Frag and defrag dropboxes are created during initialization of the TReK CFDP

library when InitToolkitCfdp function reads the TReK CFDP configuration file. Pre-

existing dropbox files are immediately fragmented after the creation of the frag dropbox.

If the local destination directory of a frag dropbox is a CFDP dropbox, the file fragment

will automatically be transferred to the CFDP dropbox's remote destination directory. If

the CFDP dropbox's remote destination directory is a defrag dropbox, the fragmented file

will automatically be put back together and moved to the defrag dropbox's destination

directory when all the file fragments have been received by the defrag dropbox. By

TREK-USER-0004

 31

chaining together frag and defrag dropboxes with a CFDP dropbox, a completely

automated file fragmentation, CFDP file transfer, file defragmentation chain may be

created and set in motion by placing a file in the local frag dropbox. In addition, encrypt

and decrypt dropboxes may be chained to the frag and defrag dropboxes producing an

automated sequence of file encryption, file fragmentaion, CFDP file transfer, file

defragmentation and file decryption. The fragmentation dropbox comes in two flavors:

"frag" or "frag_cfdp". A "frag" dropbox creates a series of file fragments and

immediately places the fragments in the dropbox's destination directory which may or

may not be a CFDP dropbox directory. If the "frag" dropbox destination directory is a

CFDP dropbox, the file fragments are downlinked simultaneously in a series of

independent CFDP transactions. A "frag_cfdp" dropbox creates a series of fragments but

only after the successful CFDP transfer of the previous file fragment to the remote

destination of CFDP dropbox. In other words, a "frag_cfdp" dropbox's destination

directory must be a CDFP dropbox directory and the "frag_cfdp" dropbox will only

create the next file fragment after the previous file fragment has been successfully

transferred by the CFDP dropbox. For this reason, a "frag_cfdp" dropbox's destination

directory must be CFDP dropbox directory. A "frag_cfdp" dropbox will require more

time to transfer a very large file but has the advantage of an orderly and immediate

cancellation of file fragmentation if there are problems transferring a file fragment using

CFDP.

Acceptable formats of the frag/defrag dropbox primitive string are as follows:

➢ dropbox <frag/frag_cfdp> <"dropbox path"> <“destination path"> <file

fragmentation size> <“successful transaction path">

 (e.g., dropbox frag "D:/dropbox_dest1/" "D:/dest1/" 100000000 "D:/success/")

➢ dropbox <frag/frag_cfdp> <"dropbox path"> <“destination path"> <file

fragmentation size> <“successful transaction path">

 (e.g., dropbox frag_cfdp "D:/dropbox_dest1/" "D:/dest/" 100000000 "")

➢ dropbox <defrag> <"dropbox path"> <“destination path"> <“successful transaction

path">

 (e.g., dropbox defrag "D:/dest1" "D:/final_destnation" "")

The frag/frag_cfdp dropbox primitive includes the frag or frag_cfdp service, the dropbox

path, the destination path, the 32 bit file fragmentation size, in bytes, and the successful

transaction path. The defrag dropbox primitive includes the defrag service, the dropbox

path, the destination path and the successful transaction path. The frag, frag_cfdp or

defrag service identifies whether the dropbox is fragmenting or

defragmenting/reconstructing files. The frag or frag_cfdp dropbox breaks up a file into

fragments sized to match the desired file fragmentation size, in bytes, and creates a new

file fragment name by adding the current file fragment count and total fragment count to

the fragmented file's dropbox extension. The defrag dropbox parses the file fragment

name to identify the file's current and total fragment count prior to reconstructing the

original file.The frag and defrag dropbox primitives also include a destination path to the

TREK-USER-0004

 32

local directory where the file fragments or reconstructed files are stored. If the successful

transaction path is defined, as shown in the first example, the dropbox will move the

original file or file fragments placed in the dropbox to the successful transaction directory

if and only if new file fragments or reconstructed files are successfully created and stored

in the dropbox's destination directory. If the successful transaction path is empty, as

shown in the second example, the dropbox will delete the original file or file fragments

placed in the dropbox if and only if new file fragments or reconstructed files are

successfully created and stored in the dropbox's destination directory. If the frag or

defrag dropbox fails to fragment or reconstruct the file, the file will be renamed with a

time tagged ".droperror" extension and remain in the dropbox. The frag or defrag

dropbox will not attempt to fragment or defragment/reconstruct a file with a ".droperror"

extension in its filename.

5.5 How to Turn on Message Logging

This section describes how to log messages to a file. Message Logging will only capture

messages generated after Message Logging is turned on. Any messages generated before

message logging was turned on will not appear in the log.

1. Launch the CFDP console application and enter the log command primitive as

follows: log <”pathname”> < log debug messages (true or false)>

2. The log command primitive includes:

a. A pathname with the path to the directory of the log file as well as the name

for the log file.

b. A true or false Boolean identifying whether debug messages are written to the

log file.

Alternatively, the CFDP console application may be configured to log messages using the

log parameters found in the TReK CFDP configuration file. These parameters include:

1. log_messages_in_file

2. log_debug_messages

3. log_file_path

4. log_file_name

Defintions for each of these TReK CFDP configuration file parameters may be found in

section 5.1 Table 4.

5.6 How to Turn on Statistics Logging

This section describes how to record a snapshot of device and packet statistics to a user

specified file. The snapshot of device and packet statistics is updated once a second with

current statistics information at both the device and packet level. Device statistics

provides information on all packets that are being received or sent by the device. Packet

statistics provides information on the individual packet groups that are being received or

sent by the device. The TReK CFDP library does not divide packets into groups so packet

statistics mirror device statistics.

TREK-USER-0004

 33

1. Launch the CFDP console application and enter the statistics command primitive as

follows: stat <”pathname”>

2. The statistics command primitive includes:

a. A pathname with the path to the directory of the statistics file as well as the

name for the statistics file.

Alternatively, the CFDP console application may be configured to record a snapshot of

statistics using the record statistics parameters found in the TReK CFDP configuration

file. These parameters include:

1. record_stat_snapshot_in_file

2. record_packet_statistics

3. record_stat_file_path

4. record_stat_file_name

Definitions for each of these TReK CFDP configuration file parameters may be found in

section 5.1 Table 4.

Table 5 identifies and describes the device statistics parameters. Note, ION CFDP relies

upon the bundle protocol to assure delivery of file segments therefore, device and packet

statistics are not relevant.

Device Statistics Parameter Description

Device Key
A character string that uniquely

identifies each device.

IP Address
The IP address of the device if it is a

socket.

Port (C/L/S)

The port number of the device if it is

a socket. If the socket is a client

socket then the port number will be

followed by two ‘/’. If the client

socket is connected to a listener

socket, the listener’s port number is

also listed. If the socket is a server

socket then the client port number

that is connected to the server is

listed first, followed by two ‘/’ and

the server’s listener port number. If

the socket is a listener socket the

listener’s port number is listed

between two ‘/’.

Protocol

The IP transportation protocol,

either TCP or UDP, if the device is a

socket.

Segments Rcvd The number of segments received by

TREK-USER-0004

 34

the device if the device is a TCP

socket.

Pkts Rcvd
The total number of packets

received by the device.

Pkts Sent
The total number of packets sent by

the device.

Pkt Rcv Rate
The number of packets received by

the device in the last second.

Max Pkt Rcv Rate
The maximum packet receive rate

experienced by the device.

Kbit Rcv Rate
The number of kilobits received by

the device in the last second.

Max Kbit Rcv Rate
The maximum kilobit receive rate

experienced by the device.

Pkt Send Rate
The number of packets sent by the

device in the last second.

Max Pkt Send Rate
The maximum packet send rate

experienced by the device.

Kbit Send Rate
The number of kilobits sent by the

device in the last second.

Max Kbit Send Rate
The maximum kilobit send rate

experienced by the device.

Pkts Dropped

The total number of packets that

were dropped because they could

not be temporarily stored in a queue

or buffer. The most likely cause of

dropped packets is packets arriving

at very high packet rates and/or a

queue size that is too small.

Table 5 Device Statistics

Table 6 identifies and describes the packet statistics parameters for a device.

Packet Statistics Parameter Description

Packet Key
A character string that uniquely

identifies each packet type.

Pkts Rcvd

The total number of packets that are

received and identified as this packet

type.

Pkts Sent

The total number of packets that are

sent and identified as this packet

type.

Pkt Rcv Rate

The number of packets received and

identified as this packet type in the

last second.

TREK-USER-0004

 35

Max Pkt Rcv Rate
The maximum packet receive rate

experienced by this packet type.

Kbit Rcv Rate

The number of kilobits received and

identified as this packet type in the

last second.

Max Kbit Rcv Rate
The maximum kilobit receive rate

experienced by this packet type.

Pkt Send Rate
The number of packets of this

packet type sent in the last second.

Max Pkt Send Rate
The maximum packet send rate

experienced by this packet type.

Kbit Send Rate
The number of kilobits of this

packet type sent in the last second.

Max Kbit Send Rate
The maximum kilobit send rate

experienced by this packet type.

Pkts Dropped

The total number of packets, of this

type, that were dropped because

they could not be processed by

another device. The most likely

cause of dropped packets is packets

arriving at very high packet rates.

Pkt Seq Errors

The total number of packet sequence

errors identified for this packet type.

For example, the primary header of

the CCSDS packet contains a 14-bit

number that is used as a sequence

count. For each packet that arrives,

the sequence count is compared to

the sequence count of the previous

packet. If the count is not the next in

the sequence, the packet sequence

error value is incremented.

Max Pkt Seq Error

The maximum packet sequence

error experienced by this packet

type.

Table 6 Packet Statistics

5.7 How to Turn on Metrics Logging

This section describes how to record a snapshot of CFDP metrics to a user specified file.

The snapshot of CFDP metrics is updated once a second with the completion status of

each CFDP transaction. The CFDP metrics are divided into sending and receiving

categories and grouped by file size ranging from less than a one megabyte to over a

gigabyte. The metrics include calculations on the number and percent of files sent or

TREK-USER-0004

 36

received, the minimum, maximum, and average file transfer time and the number and

percent of files that required packet retransmission.

1. Launch the CFDP console application and enter the metrics command primitive as

follows: metric <”pathname”>

2. The metrics command primitive includes:

a. A pathname with the path to the directory of the metrics file as well as the

name for the metrics file.

Alternatively, the CFDP console application may be configured to record a snapshot of

metrics using the record metrics parameters found in the TReK CFDP configuration file.

These parameters include:

1. record_cfdp_metrics_snapshot_in_file

2. record_cfdp_metrics_file_path

3. record_cfdp_metrics_file_name

Definitions for each of these TReK CFDP configuration file parameters may be found in

section 5.1 Table 4.

Table 7 identifies and describes the CFDP metrics parameters. Note, ION CFDP relies

upon the bundle protocol to assure delivery of file segments therefore, NAK metrics are

not relevant.

CFDP Metrics Parameter Description

File Size (MB)
The minimum and maximum file

size, in megabytes, for the group.

Success Count
The number of successful file

transfers for the group.

Success %
The percentage of successful file

transfers for the group.

Cancel Count
The number of canceled file

transfers for the group.

Abandon Count
The number of abandoned file

transfers for the group.

Fail Count
The number of failed file transfers

for the group.

Unknown Count
The number of unknown file

transfers for the group.

Min Trans Time (sec)
The minimum successful file

transfer time in seconds.

Max Trans Time (sec)
The maximum successful file

transfer time in seconds.

Avg Trans Time (sec)
The average successful file transfer

time in seconds.

Success W/ NAK Cnt The number of successful file

TREK-USER-0004

 37

transfers that required one or more

NAK packets.

Success W/ NAK %

The percentage of successful file

transfers that required one or more

NAK packets.

Min NAK CNT/Trans

The minimum number of NAK

packets that had to be transferred for

a successful file transfer requiring

NAK packets.

Max NAK Cnt/Trans

The maximum number of NAK

packets that had to be transferred for

a successful file transfer requiring

NAK packets.

Avg NAK Cnt/Trans

The average number of NAK

packets that had to be transferred for

a successful file transfer requiring

NAK packets.

Table 7 CFDP Metrics

6 Details

This section covers various application details.

6.1 Configuration

The CFDP console application may be configured to hide or not display all console

application messages by setting the “display” parameters to false. This configuration

might be preferable if running as a flight application.

The GUI and default parameters referenced in the configuration file are applicable to the

TReK CFDP GUI application and are ignored by the TReK CFDP console application.

The configuration file “support_cfdp_status_requests” parameter should be set to “false”

to disable actively monitoring transactions with the TReK CFDP library’s transaction

monitoring functions. The TReK CFDP console application does not actively monitor

transactions but example code that actively monitors transactions may be found in the

TReK CFDP library examples.

The console application may initialize its list of primitives by adding them to the

configuration file. Alternatively, the primitive lists may be initialized using the “process”

command primitive in the console application.

6.2 Transaction

The CFDP console application uses the TReK CFDP library and TReK Device Service

library to provide CFDP functionality. The CFDP console application’s ION CFDP

TREK-USER-0004

 38

mode may be configured to send a final transaction result message (e.g., success or fail)

to the source by setting the “support_transaction_result_message” flag in the console

application’s configuration file (see section 5.1 Table 4). Detailed information about CFDP

transactions may be found in the TReK CFDP library’s on-line help documentation.

6.3 Messages and Message Logging

The CFDP console application generates a variety of messages throughout the file

transfer activity. The messages are categorized by their message severity. Message

categories include error messages, warning messages, information messages, progress

messages and debug messages. Progress messages provide transaction status information

including the size of the file, bytes transferred, percentage complete and transaction state

(e.g., sending, receiving, suspend, resume…). Information messages include information

on the start of a transaction as well the success or failure of the transaction. The console

application may display error, warning, information, progress and debug messages. The

display of these messages is controlled by the “display” parameters in the configuration

file. The console application may also be configured to log messages. Message logging

is controlled by the “log” command primitive or parameters in the configuration file.

Logging may be configured to include or exclude debug messages. When logging is

turned off using the “stop log” command primitive, the log file name is appended with a

time tag to produce a unique log file name.

7 FAQ and Troubleshooting

This section addresses Frequently Asked Questions and provides tips for troubleshooting

common gotchas.

7.1 Is There an Easy Way to Transfer the Contents of a Directory?

Yes. To transfer the contents of a directory, enter the absolute path to the directory. The

CFDP application will transfer all the files in the first level of the directory.

Subdirectories will not be transferred. Be sure to include a forward slash ‘/’ at the end of

the directory path when entering the absolute path into the Source and Destination fields.

7.2 What is class1 and class2?

Class1 and class2 are transmission properties used with Native CFDP. Note: Special

thanks to NASA/GSFC for the following user friendly definitions:

“CFDP provides three Service Classes. Service Class 1 simply sends each file; there are

no replies from the receiver, nor is there any guarantee of reliable delivery. Service

Class 2 ensures reliable file delivery; any required retransmissions are requested and

performed by CFDP. Service Class 3 provides Proxy Operations (e.g. Entity ‘A’ tells

Entity ‘B’ to make a request of Entity ‘C’).”

TREK-USER-0004

 39

The TReK CFDP application supports Class 1 and Class 2 when configured for Native

CFDP. When typing in one of these choices please use class1 and class2.

7.3 What is “////”?

“////” is a value used to designate the default set of transmission properties defined in the

Configure dialog for ION CFDP. “/” can also be used. When configured for ION

CFDP, transmission properties are specified using the Configure dialog and will apply to

all CFDP transactions. For more information about transmission properties please

reference section 5.1 Table 4.

7.4 Source and Destination Constraints

Source and Destinations must be identified using an absolute path. The absolute path

name consists of the full path and the file name. The absolute path must meet the

following criteria:

➢ The absolute path cannot exceed 256 characters (null terminated).

The file size must meet the following criteria:

➢ The size of the file to be transferred must be greater than 0 Bytes.

➢ The size of the file to be transferred cannot exceed 4.2 Giga Bytes for Native CFDP.

➢ The size of the file to be transferred cannot exceed 2.1 Giga Bytes for ION CFDP

when transferring from a device hosting the Windows Operating System (OS) to a

device hosting the Windows OS.

➢ The size of the file to be transferred cannot exceed 2.1 Giga Bytes for ION CFDP

when transferring from a device hosting the Windows OS to a device hosting the

Linux OS.

Consider using the fragmentation and defragmentation dropboxes when transferring files

that exceed CFDP’s file size limitations.

7.5 My File Starts to Transfer and Then Stops

Chances are the remote entity is unavailable or is not configured as you expected. Check

both the Local and Remote entity configurations and ensure the EIDs are correct, the IP

address and port information is correct, and both entities are up and running.

7.6 Transfer Results When Item Exists at Destination

Transfer results when an item exists at a destination differ based on configuration.

When configured for Native CFDP

If you attempt to “put” an item to a destination and the item already exists at the

destination, you will see a “cancelled (Filestore rejection)” error message and the existing

item will not be overwritten.

TREK-USER-0004

 40

When configured for ION CFDP

If you attempt to “put” an item to a destination and the item already exists at the

destination, you will see a “failed” error message and the existing item will not be

overwritten.

7.7 Important Things to Know When Using the Get Primitive

The TReK CFDP software provides the capability to "get" or retrieve one or more files

from a remote destination. It is important to note that the CFDP Blue Book describes

implementation of a "get" as a proxy "put". TReK Native CFDP implements the CFDP

Blue Book defined proxy "put" function using proxy request and response messages.

TReK ION CFDP does not implement proxy "put" function using proxy request and

response messages. In addition, the “get” directive is not supported in all ISS CFDP

Native and ION implementations. Therefore, the "get" request will only succeed if both

sides of the file delivery transaction are using TReK software. The TReK ION CFDP

“get” function initiates the file transfer process by delivering an equivalent "put"

primitive character string to the remote platform's CFDP software using a “get” request

message. In addition, a “get” response message is generated providing transaction status

information to the initiator. There is an error scenario in which the initiator of the ION

CFDP “get” receives no feedback. If an ION CFDP “get” request message or “get”

response message never reaches its target platform, the initiator will receive no status

describing the result of the “get” request.

.

7.8 How Does Suspend Transactions Work?

When configured for Native CFDP

CFDP suspending transactions by suspending both data transmission and timeout clocks

associated with the local platform’s file transfer transactions. The remote platform is not

notified of the suspension of file transfer transactions on the local platform and may

exceed its timeout limits if the local platform does not resume its file transfer transactions

for an extended period of time. If the local file transfer suspension is for an extended

period of time, the remote platforms should receive a separate suspend transaction

command to avoid exceeding its timeout limits. Both platforms may resume file transfer

transactions when they receive separate resume file transfer transaction commands.

When configured for ION CFDP

The ION CFDP application completes its file transfer responsibilities when it hands off to

ION’s BP application. The handoff may be relatively quick depending on the size of the

file. The suspend transaction request will not suspend a file’s transfer after the ION

CFDP application hands off a transaction to ION’s BP application. The suspend

transaction request does not affect ION CFDP file reception. The lifespan of the packet

bundles must also be considered when suspending for an extended period of time.

TREK-USER-0004

 41

7.9 CFDP Transactions in an AOS/LOS Environment

Maintaining CFDP transactions across extended LOS periods is problematic. ION CFDP

solves this issue by relying on DTN's store and forward infrastructure. A contact plan

that predicts AOS/LOS periods may be used to support ION CFDP transactions between

a flight node and a ground node if the two nodes are communicating directly with each

other. If the ION CFDP transaction communication path includes the Huntsville

Operations Support Center (HOSC) DTN2 node, the DTN2 node will store and forward

the ION CFDP transaction during AOS/LOS periods. Native CFDP is not supported by

an underlying store and forward DTN infrastructure. A user must configure timeouts or

manually suspend and resume CFDP at both ends of a transaction to maintain the

transaction across a LOS period. The TReK CFDP library solves this native CFDP issue

by providing an automatic suspend and resume capability during LOS and AOS periods.

When the TReK CFDP library senses a LOS event, it automatically suspends all CFDP

transactions. When the TReK CFDP library senses an AOS event, it automatically

resumes all CFDP transactions. TReK identifies AOS and LOS events by sending and

receiving a four byte connectivity packet over a predefined UDP socket. TReK's

automatic suspend and resume design maintains native CFDP transactions across

multiple LOS periods without adjusting timeout values or requiring user intervention. If

new CFDP transactions are requested during a LOS period, the pending transaction

requests are placed in a queue and are submitted to the TReK CFDP library at the

beginning of the next AOS period. The automatic suspend and resume parameters in the

TReK CFDP configuration file configure and control TReK's automatic suspend and

resume feature. For more information about automatic suspend and resume parameters

please reference section 5.1 Table 4.

7.10 How Do I Include My Crypt User Passphrase in the CFDP Console App?

If you created a public/private key pair using the “trek_crypt” application and included a

user passphrase, you must include the user passphrase in the command line that launches

the CFDP console application or you must modify the CFDP console application source

code and rebuild the application.

To launch the CFDP console application with a user passphrase, include the passphrase,

in double quotes, after the configuration file path and filename as follows:

➢ trek_cfdp_console.exe “D:/toolkit_cfdp_config.txt” “passphrase”

or

➢ ./start_trek_cfdp_console.sh “/home/username/toolkit_cfdp_config.txt” “passphrase”

To modify the CFDP console application source code to use a passphrase to

unwrap/decrypt the private key, change “InitToolkitCfdpAndCryptPassphrase” in main()

to include your passphrase as the second argument in the function call. The TReK CFDP

console source code is located in the install directory on Windows under

/example/trek_toolkit_cfdp_api/trek_cfdp_console/. On Linux the source code is located

in the install directory under /example/ trek-deviceservices

/trek_toolkit_cfdp_api/trek_cfdp_console/. You will have to recompile the CFDP

TREK-USER-0004

 42

console application after making the change. You may use the Windows

trek_cfdp_console.vcxproj file or Linux makefile that is included with the source code

when recompiling the TReK CFDP console application. Finally, you will need to rename

the original trek_cfdp_console.exe (always keep a copy of the original executable)

located in TReK’s bin directory prior to moving the new trek_cfdp_console.exe to

TReK’s bin directory.

