
TREK-USER-0002

TREK

CONCEPTS

March 2019

Approved for Public Release; Distribution is Unlimited.

TREK-USER-0002

 i

TABLE OF CONTENTS

PARAGRAPH PAGE

1 Welcome ... 1

2 Technical Support ... 1

3 TReK Workspace .. 1

4 Packet Keys.. 1

5 Colors and Data Flow ... 3

6 Data Store .. 3

7 Data .. 4

7.1 General Things ... 5
7.1.1 Names ... 5
7.1.2 Descriptions .. 5
7.1.3 Ownership ... 5

7.2 Parameters .. 5
7.2.1 Endianness .. 6
7.2.2 Data Type ... 6
7.2.3 Parameter Collections .. 8
7.2.4 Location and Samples ... 8
7.2.5 Different Type of Parameter Values ... 8
7.2.6 Value Restrictions ..10
7.2.7 Parameter Status ...12

7.3 Packets ..13
7.3.1 Zones..13
7.3.2 Attributes ...14
7.3.3 Packet Key ...16

7.4 Calibration ...16
7.4.1 Polynomial Calibration ...16
7.4.2 Spline Calibration ..16
7.4.3 User-Defined Calibration ..17
7.4.4 Calibration Example ..17

7.5 Other Concepts ..17
7.5.1 Switching ...18
7.5.2 Format Collections ..18
7.5.3 Random Packet Collections ...18

8 Database ... 18

9 Cryptography Services ... 20

TREK-USER-0002

 ii

FIGURES

FIGURE PAGE

Figure 1 Packets, Parameter Collections, and Parameters .. 4
Figure 2 Byte Order .. 6
Figure 3 Parameter Location Attributes ... 8
Figure 4 All High and Low Alarms ...11
Figure 5 Selected High and Low Alarms ..11
Figure 6 A Packet and Its Zones ..14
Figure 7 Packet Attributes ...15
Figure 8 Spline Calibration ...17
Figure 9 TReK Metadata Database Tab after GSE Packet Import from ASCII File19
Figure 10 TReK Metadata Packet Tab with GSE Packet ..20

TREK-USER-0002

 iii

TABLES

TABLE PAGE

Table 1 Numeric Data Types .. 7
Table 2 Byte-Based Data Types ... 7
Table 3 Time Data Types ... 8
Table 4 Value Availability for Each Data Type ..10
Table 5 Status Characters ..13
Table 6 Packet Attribute Values ..16

TREK-USER-0002

 1

1 Welcome
The Telescience Resource Kit (TReK) is a suite of software applications and libraries that
can be used to monitor and control assets in space or on the ground.

This tutorial describes important concepts to understand for TReK 5.x.

2 Technical Support
If you are having trouble installing the TReK software or using any of the TReK
software, please contact us for technical assistance:

TReK Help Desk E-Mail, Phone & Fax:

E-Mail: trek.help@nasa.gov
Telephone: 256-544-3521 (8:00 a.m. - 4:00 p.m. Central Time)
Fax: 256-544-9353

If you call the TReK Help Desk and you get a recording please leave a message and
someone will return your call. E-mail is the preferred contact method for help. The e-
mail message is automatically forwarded to the TReK developers and helps cut the
response time. The HOSC Help Desk (256-544-5066) can provide assistance as needed
and is available 24x7.

3 TReK Workspace
The TReK Workspace is a directory structure created by the TReK 5.x software in your
home directory. It is similar to the directory structure that was created by the TReK 3.x
software in C:\Users\<username>AppData\Roaming\TReK. The TReK Workspace will
be created by TReK 5.x applications that use this area such as the TReK Data, TReK
Command, and TReK Metadata applications.

4 Packet Keys
TReK 5.x introduces you to the premier of the packet key, a new methodology for
identifying, filtering and routing packets in TReK Data and TReK Command. The
packet key replaces the classic TReK 3.x Packet ID (APID), Packet Type and Data Mode
identification scheme with a modernized key that travels with the packet as it traverses
through the various TReK devices that compose TReK Data and TReK Command. A
TReK device is a generic term used to describe various software constructs including
sockets, dynamic link libraries, shared objects, pipes, shared memory, etc. The packet
key is “glued” to the packet as soon as it is received, read or created by a TReK device.

TREK-USER-0002

 2

The packet key gives you the power to tell packets what devices they need to visit (or not
visit) much like parents and their directions to their teenagers about friends only in the
packet key case, the packets will actually follow directions.

So, how does a packet key get created? From a software object called a Packet Header
Processor (PHP). A PHP defines the location of a variety of packet header fields. A PHP
has the ability to process or retrieve the values in these individual packet header fields
using the field’s PHP definition. These fields may be associated with the size of the
packet, the sequence count of the packet or the embedded time of the packet. The fields
may also be associated with the generation of a packet’s packet key.

So how does a PHP get defined or created? There are two answers to that question. The
first answer is by the user. A PHP can be defined and initialized by reading a PHP ASCII
configuration file of name value pairs. A template for this file may be found in the config
directory of your TReK Workspace. The template includes a brief description of the
various PHP parameters. A more detailed discussion about the PHP configuration file
may be found in the TReK Record API. The second and most popular way a PHP is
defined is by metadata from the database or metadata from a metadata file. By attaching
a PHP to a TReK device, you enable TReK Data or TReK Command to generate and
glue packet keys to the packets that a TReK device receives and forwards. TReK devices
downstream process or ignore packets based upon the packet’s key.

So what does a packet key look like? The packet key is simply alphanumeric dotted
string notation of one or more packet key field values (packet header parameters) and
zero or more character strings formatted as follows:

<packet type>.<packet header field value(s)>.<source ID>.<trailer>

All fields are optional though a packet key with no field definitions does not make much
sense. Packet type, source ID and trailer are simply alphanumeric strings that may be
added to every packet associated with the TReK device. For instance, common packet
type string notations in the TReK metadata files are “PdssPayload” and “IssCcsds”.
Packet header field values are where all the work is done in generating the packet key.
These field values are the specific parameters in the packet header. The PHP processes
the specific parameters from the packet’s header using the parameter’s description in the
PHP configuration file. The parameter’s description information includes its location,
byte order, value offset and precision. Packet header field values in a packet key may
also be replaced by an enumerator name by specifying the field value and its enumerated
name in the PHP configuration file.

Some simple examples of packets keys with enumerated values include:
PdssPayload.RT.PL.7 and IssCcsds.7. The first example is a PDSS payload packet with a
real-time data mode and an APID value of 7. The second example is an ISS CCSDS
packet with and an APID value of 7. One and only one PHP may be associated with a
TReK device and all data processed by a TReK device should match the TReK device’s
PHP stream type. In other words, you should not flow ISS CCSDS data to a TReK

TREK-USER-0002

 3

device configured to receive PDSS payload data because the PHP will generate incorrect
packet keys.

5 Colors and Data Flow
If you used the TReK Telemetry Processing application you are probably used to looking
for the packet to turn green to indicate you are receiving data. TReK 5.x still uses color
to provide information about data flow, but there is additional information available and
it’s important to understand what it means when something turns green. Please reference
the TReK Data User Guide for details.

6 Data Store
Applications that have an associated API will contain a data store. In most cases you will
never need to know that the data store exists, but it can be important to understand a little
bit about it for some users. Currently there are two applications that use a data store:
TReK Data (replaces Telemetry Processing) and TReK Command (replaces Command
Processing).

For TReK Data the data store is created when the application initializes. If you only run
a single instance of TReK Data, it will use the creative name “DefaultDataStore”. If
another instance of TReK Data is started, you will be prompted to enter a name for the
data store. It is anticipated that most users migrating from TReK Release 3.x will use a
single instance of TReK Data.

The Release 3.x compatible telemetry APIs that are included in Release 5.x will always
use the “DefaultDataStore”. If you plan on using applications that incorporate the
Release 3.x APIs, you should just use a single instance of TReK Data. If you want to run
multiple instances of TReK data, you will need to incorporate the C++ API into your
applications.

For TReK Command the data store is created when you activate a destination. Each
TReK Command application supports a single destination. If you must connect to
multiple command destinations, you will run multiple instances of the TReK Command
application.

The Release 3.x compatible command APIs that are included in Release 5.x will work
with the multiple instances of the TReK Command application. Each of those API
functions included a destination name which is the same in the Release 5.x software.

TREK-USER-0002

 4

7 Data
This section describes what data is and how it is handled in TReK. It assumes that you
have read the TReK Getting Started Guide (TREK-USER-0001) and understand the
difference between the TReK Toolkit and TReK Desktop. An understanding of previous
versions of TReK, while helpful, is not required.

Previous versions of TReK used the terms telemetry and commanding to refer to data
sent from the spacecraft and from the ground respectively. The telemetry and command
data was available to the user through an application programming interface (API).
These types of APIs will still be available in TReK Desktop. However, TReK Toolkit
also provides access to the underlying code used by TReK to supply information to these
APIs.

The term data is meant to be somewhat abstract. It doesn’t matter if something is
telemetry or commanding at the bit and byte level. It’s just data. Three simple concepts
cover most of what data is in TReK: packets, parameters, and parameter collections.

Packets are most often the data that are sent from one system to another system.
Commands and telemetry are just packets. Command data is packets that tell another
system to do something. Telemetry data is packets that supply information about the
system sending the packet.

Parameters are the individual data values that contain information about the state of the
sending system or actions to be taken by the receiving system. Parameters have a value
and are either placed in the outgoing data or pulled from the incoming data. TReK uses
the terms “build” to describe placing parameters in a packet and “extract” to describe
pulling parameters from a packet.

Parameters are grouped with related parameters into collections named parameter
collections. Parameter collections are the basic building blocks of packets which are the
data sent from one system to another. Figure 1 has four views of the same packet. The
first row shows a packet as a single entity that could be sent between systems. The
second row shows that the packet is composed of parameter collections and another
packet. The third row shows that eventually a packet will break down into a series of
parameter collections. The final row shows that all parameter collections are a series of
parameters. Each row is a different view of the same data.

Packet

Parameter Collection

A B C D FE G J KIH L N OM

Parameter
CollectionPacket

Parameter Collection Parameter
Collection

Parameter
Collection Parameter Collection

 Figure 1 Packets, Parameter Collections, and Parameters

TREK-USER-0002

 5

The sections that follow provide information on the concept of data in TReK. There is
additional detail about using the Data API, including examples, available in online help
when TReK is installed.

7.1 General Things
There are a few things that apply to most of things considered data in TReK. They are
covered here.

7.1.1 Names
Almost everything associated with data gets a name. When you want TReK to give you a
parameter’s value, you need to know the parameter’s name. The most used name will be
the parameter’s name, but other things will also have names. Everything that can be
named can also have an alias. Where names should always be unique in a given context
(more on that later), aliases do not have to be unique.

7.1.2 Descriptions
Anything that can be named can also have descriptions. TReK has three types of
descriptions: short, long, and user. Short descriptions are usually just, well, short. Long
descriptions often provide more information about a parameter. User descriptions are
something that may be meaningful for a user and is intended to be reset by users. These
distinctions really don’t come into play except for TReK Desktop. For data, they are just
three strings. There’s no restriction on lengths (yes, a short description can be longer
than a long description). However, when you use other capabilities in TReK such as
databases, restrictions may be placed on the length of these descriptions.

7.1.3 Ownership
The owner is used to limit access to something within TReK. When you use the Data
API directly, you have complete control of the data. However, in some environments
such as commanding, you may need to restrict who has access.

7.2 Parameters
Parameters are the building blocks of data. Each parameter has a data type, length,
location, number of samples, and other attributes. These attributes are used to place the
parameter in a packet or pull the parameter out of a packet. The sections that follow will
describe these attributes and introduce other details that will be covered in later sections.

TREK-USER-0002

 6

7.2.1 Endianness
Before covering the attributes of parameters we’ll cover an attribute of computer
processors. The byte order of processors, or endianness, describes how the bytes are
stored in memory. Computers are classified as big endian or little endian. Big endian
computers store the most significant byte first. Little endian computers store the least
significant byte first.

Knowledge of the endianness of the computer TReK is executing on is automatically
obtained. However, the endianness of the computer sending or receiving the data must be
supplied. The attribute that supplies that information is byte-order. In addition to little
endian and big endian byte orders TReK also supports data that is byte swapped or word
swapped. Figure 2 shows the byte order supported in TReK. Byte 0 is the most
significant byte.

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

1 0 3 2 5 4 7 6

2 3 0 1 6 7 4 5

Big Endian:

Little Endian:

Byte Swapped:

Word Swapped:

Figure 2 Byte Order

7.2.2 Data Type
The data type allows TReK to know if the parameter represents a string, integer, floating
point, or some other data. Most of the data types available in TReK originated from the
Space Shuttle and International Space Station programs and are defined in the MSFC
HOSC Telemetry Format Standard (MSFC-STD-1274 Volume 2). Additional data types
have been added from other programs and from user requests.

For the purposes of this section data types will be grouped into three categories: numeric,
byte-based, and time. Numeric data will mostly be floating point numbers and integers.
Byte-based data will be data that is required to be on a byte boundary such as a string.
Time data covers some of the different ways people have come up with over the years to
represent time.

Each table that follows gives the name of the data type, length restrictions, and a
description of the data. In some cases a reference may be made to other documents to
provide a more detailed description of the data type. The allowed byte order for each
data type is provided in the Data API documentation.

Data Type Length (bits) Description
Two’s Complement Integer 2-64 The native representation of signed

integer
Unsigned Integer 1-64 An unsigned integer value

TREK-USER-0002

 7

Data Type Length (bits) Description
Binary Coded Decimal 4, 8, 12, or 16 An unsigned integer encoded as a

binary coded decimal of 1-4 digits
where each four bytes have a value of 0
to 9.

Distended Signed Integer 16 or 32 A 13-bit two’s complement integer
represented as 16 or 32 bits. The sign
bit always occupies the most significant
bit of the data and the other 12 bits
occupy the least significant bits of data.

Sign and Magnitude Integer 2-32 A signed integer where the most
significant bit represents the sign (0 –
positive, 1 – negative) and the
remaining bits represent the value.

IEEE Floating Point 32 or 64 IEEE 754: Standard for Binary Floating
Point Arithmetic

Boolean 1 A single bit truth value.
Table 1 Numeric Data Types

Data Type Length (bytes) Description
NULL Terminated String 2-65,536 American Standard Codes for Information

Interchange (ASCII) string that will have a
NULL (hex zero) terminating character
when building a packet.

Fixed Length String 1-65,536 ASCII string that may or may not have a
NULL terminating character.

Unspecified Bytes 1-65,536 Binary data.
Table 2 Byte-Based Data Types

Data Type Length (bytes) Description
GPS Epoch Time 32 The number of seconds since 1980-01-06 00:00:00
EHS Time 48 or 52 Time represented as a series of fields indicating

year, day, hour, minutes and seconds with an option
fractional seconds. See MSFC-STD-1274 data
types TEHS and TUDS for more information.
Note: TReK does not represent the status bits of
TEHS as part of the time value, but as separate bit
fields.

ISS Time 40 GPS Epoch time followed by a single byte
representing fractional seconds.

FASTSAT Time 48 GPS Epoch time followed by two bytes
representing the number of milliseconds.

TREK-USER-0002

 8

Data Type Length (bytes) Description
DEM Time 42 GPS Epoch time followed by 10 bits representing

the number of milliseconds.
Unix Time 32 The number of seconds since 1970-01-01 00:00:00

Table 3 Time Data Types

7.2.3 Parameter Collections
Before continuing with attributes of parameters, a quick explanation of parameter
collections is needed. A parameter collection is a group of parameters that are related.
Parameters are referenced by their names in the collection, but their placement in the
collection is based on a parameter’s start bit.

7.2.4 Location and Samples
Each parameter will have a location in the parameter collection and a number of samples.
The location in TReK is represented by the start bit relative to the beginning of the
parameter collection containing the parameter.

Each parameter can have one or more samples of data. When a parameter has more than
one sample an offset between the samples must be supplied. The number of samples will
let TReK know how many samples to expect. Figure 3 shows an example of four
parameters in a parameter collection and how their start location, length, parameter
offset, and number of samples is used.

A A AB B C D

Length:
16

Offset:
64

Start
Bit:0

Length:
16

Length:
16

Offset:
64

Figure 3 Parameter Location Attributes

The start location for a parameter collection begins at zero. Parameter A above is the
first parameter in the collection and begins at start bit 0. It has a length of 16 bits. There
are 3 samples of Parameter A and each sample is 64 bits apart (i.e., the number of bits
from the end of one sample to the beginning of the next sample. Parameter B is 32 bits in
length and has two samples with an offset of 0. Parameters C and D are both a single
sample and do not use the offset attribute. They are 64 and 24 bits respectively.

7.2.5 Different Type of Parameter Values
Parameter values can be retrieved in different formats. The parameter’s bit pattern as it
appears in a packet is called the “raw” or “unprocessed” value. Often this representation

TREK-USER-0002

 9

is the same as the local data type for a computer. For example, two’s complement
integers are used for most system’s representation of a signed integer. However, for
cases where the representation of the parameter is different, you can still get to the
unprocessed value if needed.

The most convenient way to get a parameter’s value is as a type that is used on the
computer you are currently using. These parameters are sometimes referred to as
“converted” since TReK must translate the representation of data from the originating
system to the local computer’s representation. As this is the most requested form of data
for TReK, we’ll usually just refer to a parameter’s converted value as its value
throughout the documentation. The example that follows shows an integer that is
encoded in the packet as a binary coded decimal. The raw value is how the data is
represented in the packet. The converted value is how the value is represented on the
computer processor as an unsigned integer. The decimal value is how a user sees the data
when requesting a converted value.

 Raw Value: 0100 0111 1001 0001
 Converted Value: 0001 0010 1011 0111
 Decimal Value: 4791

TReK can also transform a parameter’s converted value to another value. This
transformed value is referred to as a parameter’s “calibrated” value. TReK has some
built in calibrations, but is also capable of using code you write to perform unique
calibrations for parameters as necessary. The details of calibration will be covered in a
later section.

The final format for a value is the enumerated value. Enumeration is just the translation
of an unsigned integer value to a string. For example, a single bit value may represent
two states such as “On” and “Off”. Enumerated values aren’t necessarily used for
programming decisions, but are great for displaying data values to users.

The availability of a parameter’s value in each of these four forms is dependent on the
data type and if other information is provided. The table below shows each of the data
types in TReK and whether or not it is possible to retrieve the data as raw, converted,
calibrated, or enumerated. For calibrated or enumerated values, more information is
required. That will be covered later in the document.

Data Type Raw Converted Calibrated Enumerated
Two’s Complement Integer Yes Yes Yes No
Unsigned Integer Yes Yes Yes Yes
Binary Coded Decimal Yes Yes Yes Yes
Distended Signed Integer Yes Yes Yes No
IEEE Floating Point Yes Yes Yes No
Boolean Yes Yes No Yes
NULL Terminated String Yes Yes No No
Fixed Length String Yes Yes No No

TREK-USER-0002

 10

Data Type Raw Converted Calibrated Enumerated
Unspecified Bytes Yes No No No
GPS Epoch Time Yes Yes No No
EHS Time Yes Yes No No
ISS Time Yes Yes No No
FASTSAT Time Yes Yes No No
DEM Time Yes Yes No No
Unix Time Yes Yes No No

Table 4 Value Availability for Each Data Type

7.2.6 Value Restrictions
Parameter values can have various restrictions placed on them. Sometimes this will be to
prevent someone from setting an illegal value. It can also be to monitor a value for
important information. These restrictions are explained below.

7.2.6.1 Ranges
A parameter can have low and high ranges associated with its value. When building a
packet, you set each parameter’s value. If a parameter has ranges defined, you will not
be allowed to set a value outside of the allowed range. When extracting a packet, the
parameter’s value can be checked against the ranges to determine if someone else set the
value outside of the allowed range.

7.2.6.2 Alarms
When retrieving values, the value can be checked for conditions that will trigger alarms.
At the data level, alarms do not include any loud noise. Alarms are conditions that
you’ve determined are important enough to know about. You will be informed about
alarms via a parameter’s status.

There are two types of alarms in TReK: expected state alarms and limit alarms.
Expected state alarms are checks against enumerated values to look for an unexpected
state. Limit alarms are checks of numeric data against a set of values that would trigger
the alarm.

There are three types of limit alarms in TReK: low, high, and delta. Low alarms are
triggered when a value is less than or equal to a low alarm point. High alarms are
triggered when a value is greater than or equal to a high alarm point. Delta alarms are
triggered when the value of a parameter changes at a rate as fast as the delta alarm point.

Figure 4 shows all of the low and high limits and their relationships. A value will only
have one high or low alarm set.

TREK-USER-0002

 11

Value OK
Level

1
High

Level
2

High

Level
3

High

Level
4

High
Level 5 HighLevel

1 Low
Level
2 Low

Level
3 Low

Level
4 LowLevel 5 Low

Le
ve

l 5
 L

ow
 V

al
ue

Le
ve

l 4
 L

ow
 V

al
ue

Le
ve

l 3
 L

ow
 V

al
ue

Le
ve

l 2
 L

ow
 V

al
ue

Le
ve

l 1
 L

ow
 V

al
ue

Le
ve

l 1
 H

ig
h

Va
lu

e

Le
ve

l 2
 H

ig
h

Va
lu

e

Le
ve

l 3
 H

ig
h

Va
lu

e

Le
ve

l 4
 H

ig
h

Va
lu

e

Le
ve

l 5
 H

ig
h

Va
lu

e

Figure 4 All High and Low Alarms

It is also possible to use only a subset of the high and low value alarms as shown in
Figure 5.

Value OK Level 4 HighLevel 1 LowLevel 3 LowLevel 5 Low

Le
ve

l 5
 L

ow
 V

al
ue

Le
ve

l 3
 L

ow
 V

al
ue

Le
ve

l 1
 L

ow
 V

al
ue

Le
ve

l 4
 H

ig
h

Va
lu

e

Figure 5 Selected High and Low Alarms

The delta alarm is triggered when the difference between consecutive values of a
parameter is greater than the threshold set for the alarm. The threshold value is checked
against the absolute value of the difference between consecutive parameter values. For
example, consider a parameter with a delta alarm threshold of 10. The following series
of values will show when a delta alarm is triggered:

 45 No alarm, first value (i.e., no consecutive value to compare)
 48 No alarm difference is only 3
 60 Delta alarm triggered (60 – 48 = 12)
 61 Ok
 64 Ok
 50 Delta alarm triggered (50 – 64 = -14)
 56 Ok

Each alarm type (high, low, and delta) can have five levels which are referred to as Level
1, etc. Higher level numbers are considered more severe; a Level 5 alarm is more severe
than a Level 1 alarm. Each of the five levels can be given a name. For example, you
could name Level 2 “Caution” and Level 4 “Warning”.

You don’t have to use all five levels of any alarm or even all of the alarm types. Just
choose the ones you need when a parameter’s value needs to be watched.

TREK-USER-0002

 12

You also get to choose whether the converted or calibrated value is monitored for alarms.

7.2.7 Parameter Status
When TReK is extracting data additional information about a parameter’s value can be
provided. The parameter status provides information on alarms that have been triggered,
processing errors, etc.

7.2.7.1 Two Kinds of Status
There are actually two kinds of status provided: trek status and source status. The TReK
status provides details on status that has occurred since TReK began processing the data.
When TReK detects an alarm limit has been reached or some other error, the TReK status
is updated to include that information.

The source status is only available for data that was processed by other systems and
tagged with a status. Most of the data you will process with TReK will not have a source
status.

7.2.7.2 How Status is Returned
Status in TReK is returned as two 32-bit unsigned integers. One integer represents the
TReK status and the other represents the source status. The TReK status is represented as
bit fields with each bit representing a different type of status. A value of zero is
considered no error. A value of one indicates that the bit represents some type of error.
The source status is a 32-bit unsigned integer, but TReK only knows the value and not
necessarily how each bit should be represented. These integers are good for
programming decisions, but not great for user consumption.

These integer values can be converted to strings. The string returned will be of varying
lengths depending on how many processing errors were detected. An empty string
indicates that there are no errors. If the string isn’t empty, TReK statuses are represented
as an ASCII character. If there is additional status provided by the data source, it will be
included at the end of the string and enclosed in a set of parentheses. There’s an option
to allow the source status to be represented as ASCII characters. If that option isn’t
selected, the source value will be displayed as an unsigned integer.

Table 1 shows the details for each status character available for TReK processing. Status
characters are listed in ASCII order.

Status Character Definition
Level 2 delta limit error detected
$ Level 5 low limit error detected
& Level 1 high limit error detected
* Level 5 high limit error detected
+ Level 2 high limit error detected
- Level 2 low limit error detected

TREK-USER-0002

 13

Status Character Definition
0 Level 1 low limit error detected
? Possible data loss detected
@ Level 1 delta limit error detected
A Level 4 enumeration alarm detected
C Conversion error detected
D Level 4 delta alarm detected
E Level 1 enumeration alarm detected
H Level 4 high alarm detected
K Calibration switch error detected
L Level 4 low alarm detected
Q Level 5 delta alarm detected
R High range error detected
T Level 5 enumeration alarm detected
X Alarm switch error detected
a Level 3 enumeration alarm detected
c General calibration error detected
d Level 3 delta limit detected
e Level 2 enumeration alarm detected
k Checksum error detected (data quality suspect)
l Bad length error detected
p Processing error detected
r Low range error detected
t Illegal data type for calibration detected
v Level 3 low limit detected
z Packet length error detected
^ Level 3 high limit detected

Table 5 Status Characters

An example of what the status string would look like for a parameter where TReK
detected both a Level 4 high alarm and a Level 1 delta alarm and the source status had a
value of 15: “H@ (15)”. In most cases you won’t have more than one status character
appear at any time.

7.3 Packets
Packets are the data that travel between systems. The packet is the largest aggregation of
data in TReK.

7.3.1 Zones
Packets are divided into three zones: header, data, and trailer. One or more zones must
be defined in a packet for it to be considered valid. Figure 6 shows each of the three
zones and their relative locations. Each zone of a packet contains either another packet or
a parameter collection.

TREK-USER-0002

 14

DataHeader Trailer

DataHeader

A B C D FE G J KIH L N O

A B C D N O

M

Figure 6 A Packet and Its Zones

The first line in the figure above shows a packet that has all three zones defined. The
second level shows that the header and trailer zone are composed of parameter
collections which contain one or more parameters. The data zone is composed of another
packet which only has the header and data zones defined. The third line shows that the
packet in the data zone of the top level packet is composed of two parameter collections
and that all of the data in a packet will eventually break down into a series of parameters.

7.3.2 Attributes
There are five attributes that can be set for a packet in TReK: identifiers, counter, time
stamp, length, and checksum. Each attribute can appear in any zone of the packet with
the stipulation that the zone must contain a parameter collection and not a packet. Each
attribute is optional, but some other features may not work if you don’t define an
attribute. For example, TReK uses the counter attribute to help determine if a delta error
has occurred in a parameter. All of the attributes are parameters in the packet. An
example is provided after all of the attributes are defined.

7.3.2.1 Identifiers
A packet can have one or more identifiers defined. A set of identifiers determine how a
packet should be interpreted (i.e,. what parameters are contained in the packet). Most of
the processing related to identification is found elsewhere in TReK. However, when
building a packet specifying the identifiers allows you to guarantee the packet that is built
will be correctly identified. The application process identifier (APID) in a CCSDS
packet is an example of an identifier.

7.3.2.2 Counter
A packet can also have a parameter designated as the counter. When building the packet,
TReK will automatically set the counter’s value. The counter is also used when
extracting data to determine if there was any missing data or if a delta error checking can
be performed. Counters in packets are typically increasing values and reset to zero once
the maximum has been reached. There are options to allow decrementing counters and
different handling of minimum and maximum values, but they are rarely used.

7.3.2.3 Time Stamp
A time stamp can be designated for a packet. The time stamp parameter indicates the
time the data was created. TReK will automatically set the time with the current system
time when building packets if a time stamp parameter is defined for the packet. On

TREK-USER-0002

 15

extraction, you can retrieve the time parameter to determine when a packet was actually
created.

7.3.2.4 Length
The length parameter of a packet is set by TReK when building data. This allows
variable length packets to automatically have the correct length when sent.

7.3.2.5 Checksum
A checksum can be specified for a packet. TReK currently supports three checksum
types (SUM16, CRC32, and MD5) which are described in the online help for the Data
API. You can specify the checksum end points as the start of the packet, beginning of the
data zone, the end of the data zone, and the end of the packet. Offsets are available to
move the start and end points of the checksum as necessary.

When building a packet, the last parameter set is the checksum. TReK calculates the
checksum based on the information provided when configuring the packet.

When extracting a packet, TReK will determine if the checksum in the packet matches
what is calculated. If the checksum does not match, the data is still extracted. An
extraction error is returned to indicate that the data is suspect and each parameter’s status
will have an error indicating a checksum error was detected.

7.3.2.6 Packet Attribute Example
Figure 7 shows how the packet from Figure 6 with each packet attribute type set. This
packet has two identifiers and is sent every five seconds. Parameter M is variable length
and will cause the packet length (Parameter D) to change each time.

Counter

Identifiers Length

Time Stamp Checksum

A B C D FE G J KIH L N OM

Figure 7 Packet Attributes

The two identifiers for the packet have a fixed value for each packet instance. For this
example parameters A and B will be set to 7 and 65 respectively. The counter value will
increment starting at zero for each packet. The length of the packet will be calculated
each time. The time stamp for the packet will be the system time for the sending system
and is reset each time a packet is sent. Finally, the checksum will change every packet
based on the values of the other parameters and is calculated by TReK. Table 6 shows an
example of the first three packets generated and each packet attribute value.

 ID A ID B Counter Length Time Stamp Checksum
1st Packet 7 65 0 100 2014-04-22 15:38:05 0xab31
2nd Packet 7 65 1 120 2014-04-22 15:38:10 0x1e49

TREK-USER-0002

 16

 ID A ID B Counter Length Time Stamp Checksum
3rd Packet 7 65 2 114 2014-04-22 15:38:15 0xf76b

Table 6 Packet Attribute Values

7.3.3 Packet Key
A packet key is an alphanumeric dotted string notation of one or more packet key field
values (packet header parameters) and zero or more character strings formatted as
follows:

<packet type>.<packet header field value(s)>.<source ID>.<trailer>
Examples include 1.2.3, CCSDS.1.2.3.4 and CCSDS.1.2.PB. Packet header field values
in a packet key may be replaced by an enumerator name by specifying the field value and
its enumerated name in a packet header processor configuration file. In addition, packet
keys may be defined in a packet header processor configuration file or metadata file.
Packet keys are used to identify, filter and route packets. Please reference TReK Record
API for details.

7.4 Calibration
Additional processing of parameter values is available and referred to as calibration.
There are two built in types of calibration for TReK: polynomial and spline. In addition
to the built in calibration types, you can perform unique calibration in your own code.
Each of the calibration types is defined in the following sections.

7.4.1 Polynomial Calibration
Polynomial calibration uses a polynomial equation of any degree to calculate the
calibrated value based on the input (converted value). The equation below shows the
generic form of an nth order polynomial:

y = Cnxn + Cn-1xn-1 + … + C1x + C0

Where y is the calibrated value, x is the converted value, n is the order of the polynomial,
and C are constant values for each term.

7.4.2 Spline Calibration
Spline calibration performs calibration of a series of line segments as shown in Figure 8.
The calibrated value is found by identify the line segment which contains the converted
value of the parameter and using linear interpolation.

TREK-USER-0002

 17

Converted Value

Calibrated
Value

a

b

x

Figure 8 Spline Calibration

The calibrated value of a parameter is found using the following equation:

calx = (calb – cala)(convx –conva) / (convb – conva) + cala

7.4.3 User-Defined Calibration
The built in calibration types for TReK are sometimes not sufficient to calibrate a
parameter. For those cases, TReK has introduced the concept of user-defined calibration.

User-defined calibration is code that you write to perform the needed mathematical
functions needed to transform the converted value to a calibrated value. TReK will call
the code you write whenever a parameter’s calibrated value is needed. There is more
information about user-defined calibration available in the Data API online help.

7.4.4 Calibration Example
In a previous section the raw and converted values for a binary code decimal were shown.
The converted value (4791) can be calibrated with any of the above calibration types.
For this example, we’ll use the simple polynomial equation:

 y = 0.0015x2 – 7x + 3
 y = 0.0015 (4791) – 7 (4791) + 3
 y = 896.5215

7.5 Other Concepts
The concepts covered in this section build upon base functionality that is described in the
previous sections.

TREK-USER-0002

 18

7.5.1 Switching
Both calibration and alarms can have sets of data that are switched based on the value of
another parameter. The value controlling the switch can be either a numeric range or an
enumerated value.

If a calibrated value is available for range switching, it is used to perform the switching.
If a calibrator is not defined for the switch parameter, then the converted value is used.
The value is checked against the defined ranges and the corresponding set (calibrator or
alarm) is used. If the value does not fall within a defined range, the default set is used.

For enumeration switching the enumerated value is checked to determine which set to
use. If an enumerated value does not have a set assigned, then the default set is used.

7.5.2 Format Collections
A packet can have multiple formats. The format of the packet is not used for
identification, but determines what set of parameter data is available in the packet
instance. The format collection is used to hold all available formats for a packet. Each
format is defined by a parameter collection.

The format collection has a single format id that can be located either in the format data
or in the preceding header data. The format id value is used to select the format for
processing the data. If the format id value does not correlate to a parameter collection, no
further processing will occur.

7.5.3 Random Packet Collections
If data sets can appear in any order within a packet, a random packet collection can be
used to process the data. Each data set or subset of data is defined as a packet. These
packets must all have the same identification scheme. Multiple data sets can appear in
the same packet instance. If a data set is identified, the data set is processed and the next
data set is found. If a data set cannot be identified, further processing of the packet
instance will stop.

8 Database
This information kind of goes along with the data section as well. The way TReK looks
at packets is that they can be embedded within another packet. The packets section above
mentions that. So when you go to add or convert a packet into a telemetry database,
sometimes more than one packet will get added to the database. For instance, when you
use the Metadata application to import an EHS GSE definition file to the database, two
packets will get added to the database as shown in Figure 9.

TREK-USER-0002

 19

Figure 9 TReK Metadata Database Tab after GSE Packet Import from ASCII File

There will be a GSE CCSDS type packet and then that packet will get embedded within a
PDSS GSE packet. The first packet only has the CCSDS headers on it while the latter
packet has the EHS headers which get wrapped around the first. Figure 10 shows what
this looks like when the PDSS GSE packet is displayed in the TReK Metadata Packet tab.
The top level packet is the PDSS GSE packet with an EHS header and the GseCcsds
packet in the data zone. When you go to process that packet in the Data application you
would add the PDSS GSE packet, because you would be receiving the data with the EHS
headers and CCSDS headers. The same is true for PDSS Payload type packets. The way
TReK looks at it is that it would be an ISS CCSDS type packet that is embedded in a
PDSS Payload type packet.

TREK-USER-0002

 20

Figure 10 TReK Metadata Packet Tab with GSE Packet

9 Cryptography Services
TReK provides cryptography services that can be used to encrypt and decrypt files and
data streams. These capabilities are available across various TReK software applications
and libraries. TReK uses OpenSSL's FIPS 140-2 validated cryptographic module and
public/private key pairs to encrypt and decrypt files and packets. TReK cryptography
services are available on 32 bit and 64 bit Linux operating systems and 64 bit Windows
operating systems. TReK cryptography services are not available on 32 bit Window
operating systems. For details about TReK Cryptography Services please reference the
TReK Cryptography Services Tutorial.

	1 Welcome
	2 Technical Support
	3 TReK Workspace
	4 Packet Keys
	5 Colors and Data Flow
	6 Data Store
	7 Data
	7.1 General Things
	7.1.1 Names
	7.1.2 Descriptions
	7.1.3 Ownership

	7.2 Parameters
	7.2.1 Endianness
	7.2.2 Data Type
	7.2.3 Parameter Collections
	7.2.4 Location and Samples
	7.2.5 Different Type of Parameter Values
	7.2.6 Value Restrictions
	7.2.6.1 Ranges
	7.2.6.2 Alarms

	7.2.7 Parameter Status
	7.2.7.1 Two Kinds of Status
	7.2.7.2 How Status is Returned

	7.3 Packets
	7.3.1 Zones
	7.3.2 Attributes
	7.3.2.1 Identifiers
	7.3.2.2 Counter
	7.3.2.3 Time Stamp
	7.3.2.4 Length
	7.3.2.5 Checksum
	7.3.2.6 Packet Attribute Example

	7.3.3 Packet Key

	7.4 Calibration
	7.4.1 Polynomial Calibration
	7.4.2 Spline Calibration
	7.4.3 User-Defined Calibration
	7.4.4 Calibration Example

	7.5 Other Concepts
	7.5.1 Switching
	7.5.2 Format Collections
	7.5.3 Random Packet Collections

	8 Database
	9 Cryptography Services

